Monaco James, Hipp J, Lucas D, Smith S, Balis U, Madabhushi Anant
Department of Biomedical Engineering, Rutgers University, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):365-72. doi: 10.1007/978-3-642-33415-3_45.
Color nonstandardness--the propensity for similar objects to exhibit different color properties across images--poses a significant problem in the computerized analysis of histopathology. Though many papers propose means for improving color constancy, the vast majority assume image formation via reflective light instead of light transmission as in microscopy, and thus are inappropriate for histological analysis. Previously, we presented a novel Bayesian color segmentation algorithm for histological images that is highly robust to color nonstandardness; this algorithm employed the expectation maximization (EM) algorithm to dynamically estimate for each individual image the probability density functions that describe the colors of salient objects. However, our approach, like most EM-based algorithms, ignored important spatial constraints, such as those modeled by Markov random field (MRFs). Addressing this deficiency, we now present spatially-constrained EM (SCEM), a novel approach for incorporating Markov priors into the EM framework. With respect to our segmentation system, we replace EM with SCEM and then assess its improved ability to segment nuclei in H&E stained histopathology. Segmentation performance is evaluated over seven (nearly) identical sections of gastrointestinal tissue stained using different protocols (simulating severe color nonstandardness). Over this dataset, our system identifies nuclear regions with an area under the receiver operator characteristic curve (AUC) of 0.838. If we disregard spatial constraints, the AUC drops to 0.748.
颜色非标准性——即相似物体在不同图像中呈现出不同颜色特性的倾向——在组织病理学的计算机分析中构成了一个重大问题。尽管许多论文提出了改善颜色恒常性的方法,但绝大多数方法假设图像是通过反射光形成的,而不是像显微镜那样通过光透射形成的,因此不适用于组织学分析。此前,我们提出了一种针对组织学图像的新颖贝叶斯颜色分割算法,该算法对颜色非标准性具有高度鲁棒性;此算法采用期望最大化(EM)算法为每个单独图像动态估计描述显著物体颜色的概率密度函数。然而,我们的方法与大多数基于EM的算法一样,忽略了重要的空间约束,例如由马尔可夫随机场(MRF)建模的那些约束。为了解决这一缺陷,我们现在提出空间约束EM(SCEM),这是一种将马尔可夫先验纳入EM框架的新颖方法。关于我们的分割系统,我们用SCEM取代EM,然后评估其在苏木精和伊红(H&E)染色的组织病理学中分割细胞核的能力提升情况。在使用不同方案染色的七段(几乎)相同胃肠道组织切片上评估分割性能(模拟严重颜色非标准性)。在这个数据集上,我们的系统识别核区域的接收器操作特征曲线(AUC)下面积为0.838。如果我们忽略空间约束,AUC会降至0.748。