Abdel-Nasser Mohamed, Singh Vivek Kumar, Mohamed Ehab Mahmoud
Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt.
Computer Engineering and Mathematics Department, University Rovira i Virgili, 43007 Tarragona, Spain.
Diagnostics (Basel). 2022 Dec 2;12(12):3024. doi: 10.3390/diagnostics12123024.
Existing nuclei segmentation methods face challenges with hematoxylin and eosin (H&E) whole slide imaging (WSI) due to the variations in staining methods and nuclei shapes and sizes. Most existing approaches require a stain normalization step that may cause losing source information and fail to handle the inter-scanner feature instability problem. To mitigate these issues, this article proposes an efficient staining-invariant nuclei segmentation method based on self-supervised contrastive learning and an effective weighted hybrid dilated convolution (WHDC) block. In particular, we propose a staining-invariant encoder (SIE) that includes convolution and transformers blocks. We also propose the WHDC block allowing the network to learn multi-scale nuclei-relevant features to handle the variation in the sizes and shapes of nuclei. The SIE network is trained on five unlabeled WSIs datasets using self-supervised contrastive learning and then used as a backbone for the downstream nuclei segmentation network. Our method outperforms existing approaches in challenging multiple WSI datasets without stain color normalization.
由于染色方法以及细胞核形状和大小的变化,现有的细胞核分割方法在苏木精和伊红(H&E)全切片成像(WSI)中面临挑战。大多数现有方法需要一个染色归一化步骤,这可能会导致源信息丢失,并且无法处理扫描仪间特征不稳定问题。为了缓解这些问题,本文提出了一种基于自监督对比学习的高效染色不变细胞核分割方法以及一个有效的加权混合扩张卷积(WHDC)模块。具体而言,我们提出了一种染色不变编码器(SIE),它包括卷积和Transformer模块。我们还提出了WHDC模块,使网络能够学习多尺度细胞核相关特征,以处理细胞核大小和形状的变化。SIE网络使用自监督对比学习在五个未标记的WSI数据集上进行训练,然后用作下游细胞核分割网络的主干。我们的方法在具有挑战性的多个WSI数据集上,无需染色颜色归一化,性能优于现有方法。