Suppr超能文献

基于自监督深度对比网络的高效染色不变细胞核分割方法

Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network.

作者信息

Abdel-Nasser Mohamed, Singh Vivek Kumar, Mohamed Ehab Mahmoud

机构信息

Department of Electrical Engineering, Aswan University, Aswan 81542, Egypt.

Computer Engineering and Mathematics Department, University Rovira i Virgili, 43007 Tarragona, Spain.

出版信息

Diagnostics (Basel). 2022 Dec 2;12(12):3024. doi: 10.3390/diagnostics12123024.

Abstract

Existing nuclei segmentation methods face challenges with hematoxylin and eosin (H&E) whole slide imaging (WSI) due to the variations in staining methods and nuclei shapes and sizes. Most existing approaches require a stain normalization step that may cause losing source information and fail to handle the inter-scanner feature instability problem. To mitigate these issues, this article proposes an efficient staining-invariant nuclei segmentation method based on self-supervised contrastive learning and an effective weighted hybrid dilated convolution (WHDC) block. In particular, we propose a staining-invariant encoder (SIE) that includes convolution and transformers blocks. We also propose the WHDC block allowing the network to learn multi-scale nuclei-relevant features to handle the variation in the sizes and shapes of nuclei. The SIE network is trained on five unlabeled WSIs datasets using self-supervised contrastive learning and then used as a backbone for the downstream nuclei segmentation network. Our method outperforms existing approaches in challenging multiple WSI datasets without stain color normalization.

摘要

由于染色方法以及细胞核形状和大小的变化,现有的细胞核分割方法在苏木精和伊红(H&E)全切片成像(WSI)中面临挑战。大多数现有方法需要一个染色归一化步骤,这可能会导致源信息丢失,并且无法处理扫描仪间特征不稳定问题。为了缓解这些问题,本文提出了一种基于自监督对比学习的高效染色不变细胞核分割方法以及一个有效的加权混合扩张卷积(WHDC)模块。具体而言,我们提出了一种染色不变编码器(SIE),它包括卷积和Transformer模块。我们还提出了WHDC模块,使网络能够学习多尺度细胞核相关特征,以处理细胞核大小和形状的变化。SIE网络使用自监督对比学习在五个未标记的WSI数据集上进行训练,然后用作下游细胞核分割网络的主干。我们的方法在具有挑战性的多个WSI数据集上,无需染色颜色归一化,性能优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad7/9777104/832b5bb8ee19/diagnostics-12-03024-g001.jpg

相似文献

1
Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network.
Diagnostics (Basel). 2022 Dec 2;12(12):3024. doi: 10.3390/diagnostics12123024.
2
Dual Encoder Attention U-net for Nuclei Segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3205-3208. doi: 10.1109/EMBC46164.2021.9630037.
4
StainCUT: Stain Normalization with Contrastive Learning.
J Imaging. 2022 Jul 20;8(7):202. doi: 10.3390/jimaging8070202.
6
Transformer-based unsupervised contrastive learning for histopathological image classification.
Med Image Anal. 2022 Oct;81:102559. doi: 10.1016/j.media.2022.102559. Epub 2022 Jul 30.
7
Triple U-net: Hematoxylin-aware nuclei segmentation with progressive dense feature aggregation.
Med Image Anal. 2020 Oct;65:101786. doi: 10.1016/j.media.2020.101786. Epub 2020 Jul 18.
8
Self-Attentive Adversarial Stain Normalization.
Pattern Recognit (2021). 2021 Jan;12661:120-140. doi: 10.1007/978-3-030-68763-2_10. Epub 2021 Feb 21.
9
RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval.
Med Image Anal. 2023 Jan;83:102645. doi: 10.1016/j.media.2022.102645. Epub 2022 Oct 1.
10

引用本文的文献

1
Keep it accurate and robust: An enhanced nuclei analysis framework.
Comput Struct Biotechnol J. 2024 Nov 13;24:699-710. doi: 10.1016/j.csbj.2024.10.046. eCollection 2024 Dec.
2
The Diagnostic and Prognostic Value of miR-155 in Cancers: An Updated Meta-analysis.
Mol Diagn Ther. 2023 May;27(3):283-301. doi: 10.1007/s40291-023-00641-6. Epub 2023 Mar 20.

本文引用的文献

1
MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network.
BMC Med Inform Decis Mak. 2022 Apr 4;22(1):90. doi: 10.1186/s12911-022-01826-5.
2
TSFD-Net: Tissue specific feature distillation network for nuclei segmentation and classification.
Neural Netw. 2022 Jul;151:1-15. doi: 10.1016/j.neunet.2022.02.020. Epub 2022 Mar 9.
3
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications.
Cancers (Basel). 2022 Feb 25;14(5):1199. doi: 10.3390/cancers14051199.
5
DenseRes-Unet: Segmentation of overlapped/clustered nuclei from multi organ histopathology images.
Comput Biol Med. 2022 Apr;143:105267. doi: 10.1016/j.compbiomed.2022.105267. Epub 2022 Jan 25.
8
CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images.
Comput Biol Med. 2021 May;132:104349. doi: 10.1016/j.compbiomed.2021.104349. Epub 2021 Mar 22.
9
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
10
Whole Slide Imaging: Technology and Applications.
Adv Anat Pathol. 2020 Jul;27(4):251-259. doi: 10.1097/PAP.0000000000000273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验