Biology Department, University of Washington, Seattle, Washington, United States of America.
BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, United States of America.
PLoS Biol. 2022 Jul 25;20(7):e3001732. doi: 10.1371/journal.pbio.3001732. eCollection 2022 Jul.
To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need reliable estimates of their rate of transfer between bacterial cells. Current assays to measure transfer rate are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very small, making estimates that rely on these numbers prone to noise. Here, we take a different approach to estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to capturing the random nature of plasmid conjugation, our new methodology, the Luria-Delbrück method ("LDM"), can be used on a diverse set of bacterial systems, including cases for which current approaches are inaccurate. A notable example involves plasmid transfer between different strains or species where the rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each population within the assay. Using stochastic simulations and experiments, we show that the LDM has high accuracy and precision for estimation of transfer rates compared to the most widely used methods, which can produce estimates that differ from the LDM estimate by orders of magnitude.
为了增进我们对可接合质粒生态和进化的基本理解,我们需要可靠的估计它们在细菌细胞之间的转移率。目前用于测量转移率的测定法基于确定性建模框架。然而,这些测定法中的一些细胞数量可能非常小,使得依赖这些数量的估计容易受到噪声的影响。在这里,我们采用了一种不同的方法来估计质粒转移率,该方法明确包含了这种噪声。受 Luria 和 Delbrück 的经典波动分析的启发,我们的方法基于随机建模框架。除了捕捉质粒接合的随机性之外,我们的新方法,即 Luria-Delbrück 方法(“LDM”),可以用于各种不同的细菌系统,包括当前方法不准确的情况。一个值得注意的例子涉及不同菌株或物种之间的质粒转移,其中一种细胞类型捐赠质粒的速度不等于另一种细胞类型捐赠质粒的速度。这些速率的不对称性有可能使当前的转移估计产生偏差或限制,从而限制我们在微生物群落中估计转移的能力。相比之下,LDM 通过避免对测定中每个种群的生长和转移率做出限制性假设,克服了传统方法的障碍。通过使用随机模拟和实验,我们表明与最广泛使用的方法相比,LDM 具有更高的转移率估计准确性和精度,而这些方法产生的估计值可能与 LDM 估计值相差几个数量级。