Suppr超能文献

基于深度学习的非复杂性视网膜内界膜手术预后预测。

DEEP LEARNING-BASED PREDICTION OF OUTCOMES FOLLOWING NONCOMPLICATED EPIRETINAL MEMBRANE SURGERY.

机构信息

Department of Ophthalmology, Wonju Severance Christian Hospital, Wonju, Republic of Korea.

Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea; and.

出版信息

Retina. 2022 Aug 1;42(8):1465-1471. doi: 10.1097/IAE.0000000000003480.

Abstract

PURPOSE

We used deep learning to predict the final central foveal thickness (CFT), changes in CFT, final best corrected visual acuity, and best corrected visual acuity changes following noncomplicated idiopathic epiretinal membrane surgery.

METHODS

Data of patients who underwent noncomplicated epiretinal membrane surgery at Severance Hospital from January 1, 2010, to December 31, 2018, were reviewed. Patient age, sex, hypertension and diabetes statuses, and preoperative optical coherence tomography scans were noted. For image analysis and model development, a pre-trained VGG16 was adopted. The mean absolute error and coefficient of determination (R 2 ) were used to evaluate the model performances. The study involved 688 eyes of 657 patients.

RESULTS

For final CFT, the mean absolute error was the lowest in the model that considered only clinical and demographic characteristics; the highest accuracy was achieved by the model that considered all clinical and surgical information. For CFT changes, models utilizing clinical and surgical information showed the best performance. However, our best model failed to predict the final best corrected visual acuity and best corrected visual acuity changes.

CONCLUSION

A deep learning model predicted the final CFT and CFT changes in patients 1 year after epiretinal membrane surgery. Central foveal thickness prediction showed the best results when demographic factors, comorbid diseases, and surgical techniques were considered.

摘要

目的

我们使用深度学习来预测非复杂性特发性视网膜内界膜手术后的最终中心凹中央视网膜厚度(CFT)、CFT 变化、最终最佳矫正视力和最佳矫正视力变化。

方法

回顾了 2010 年 1 月 1 日至 2018 年 12 月 31 日在 Severance 医院接受非复杂性视网膜内界膜手术的患者的数据。记录了患者的年龄、性别、高血压和糖尿病状态以及术前光学相干断层扫描。为了进行图像分析和模型开发,采用了预训练的 VGG16。采用平均绝对误差和确定系数(R 2 )来评估模型性能。该研究涉及 657 名患者的 688 只眼。

结果

对于最终 CFT,仅考虑临床和人口统计学特征的模型的平均绝对误差最低;考虑所有临床和手术信息的模型具有最高的准确性。对于 CFT 变化,使用临床和手术信息的模型表现最佳。然而,我们的最佳模型无法预测最终最佳矫正视力和最佳矫正视力变化。

结论

深度学习模型预测了视网膜内界膜手术后 1 年患者的最终 CFT 和 CFT 变化。在考虑人口统计学因素、合并症和手术技术时,中央凹厚度预测的结果最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验