Singh Kavita, Arya Yogendra
Department of Electrical Engineering, Jamia Millia Islamia, New Delhi, India.
Department of Electrical Engineering, J.C Bose University of Science and Technology, YMCA, Faridabad, Haryana, India.
ISA Trans. 2023 Feb;133:218-232. doi: 10.1016/j.isatra.2022.07.010. Epub 2022 Jul 15.
The goal of this study is to introduce an effective load frequency control scheme with the integration of tidal turbines in a standalone microgrid (μG) system. As standalone μG experiences lower inertia and lacks primary frequency control, the use of variable tidal turbines in the de-loaded region may be accepted as one of the feasible solutions for managing frequency regulation issues. In this condition, the de-load region alludes to an area where tidal turbines liberate their accumulated kinetic energy in rotational parts pursuing frequency fluctuations. An effectual cascade fractional order fuzzy PID-integral double derivative (CFOFPID-IDD) controller suggested for efficient utilization of tidal turbines, whose design variables are tuned through a recently appeared Jaya algorithm. An investigation is made between the acquired outcomes of the studied CFOFPID-IDD droop controller with fractional order fuzzy PID droop control to analyze the proposed strategy performance in various load conditions, with different physical constraints like time delay, dead zone, and generation rate constraints. Moreover, the sensitivity test reveals that the Jaya-optimized CFOFPID-IDD controller can undergo ± (10-25) % variation in various coefficients without retuning the design variable values. The simulation outcomes validate the effectiveness and adequacy of the proposed regulator.
本研究的目标是在独立微电网(μG)系统中引入一种集成潮汐涡轮机的有效负荷频率控制方案。由于独立微电网的惯性较低且缺乏一次频率控制,在卸载区域使用可变潮汐涡轮机可被视为解决频率调节问题的可行方案之一。在这种情况下,卸载区域指的是潮汐涡轮机在旋转部件中释放其积累的动能以应对频率波动的区域。为有效利用潮汐涡轮机,提出了一种有效的级联分数阶模糊PID积分二阶导数(CFOFPID-IDD)控制器,其设计变量通过最近出现的Jaya算法进行调整。对所研究的CFOFPID-IDD下垂控制器与分数阶模糊PID下垂控制的所得结果进行了比较,以分析该策略在各种负荷条件下、具有不同物理约束(如时间延迟、死区和发电速率约束)时的性能。此外,灵敏度测试表明,Jaya优化的CFOFPID-IDD控制器在各种系数变化±(10-25)%的情况下,无需重新调整设计变量值。仿真结果验证了所提出调节器的有效性和适用性。