CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
Nat Protoc. 2022 Oct;17(10):2240-2274. doi: 10.1038/s41596-022-00713-7. Epub 2022 Jul 25.
Here we present a protocol for the construction and use of two types of nanocarrier based on bacterial membrane materials for cancer vaccine delivery. Cancer vaccines induce tumor regression through triggering the specific T-cell responses against tumor neoantigens, a process that can be enhanced by nanocarrier delivery. Inspired by the body's natural immune defenses against bacterial invasion, we have developed two different types of nanocarrier based on bacterial membrane materials, which employ genetically engineered outer-membrane vesicles (OMVs), or hybrid membrane vesicles containing bacterial cytoplasmic membrane, respectively. The OMV-based nanocarriers can rapidly display different tumor antigens through the surface modified Plug-and-Display system, suitable for customized cancer vaccines when the tumor neoantigens can be identified. The hybrid membrane-based nanocarriers are prepared through fusion of the bacterial cytoplasmic membrane and the primary tumor cell membrane from surgically removed tumor tissues, possessing unique advantages as personalized cancer vaccines when the neoantigens are not readily available. Compared with chemically synthesized nanocarriers such as liposomes and polymer without intrinsic adjuvant properties, owing to the large amounts of pathogen-associated molecular patterns, the two nanocarriers can activate the antigen-presenting cells while delivering multiple antigens, thus inducing effective antigen presentation and robust adaptive immune activation. Excluding bacterial culture and tumor tissue collection, the preparation of OMV- and hybrid membrane-based nanocarriers takes ~8 h and 10 h for tumor vaccine construction, respectively. We also detail how to use these nanocarriers to create cancer nanovaccines and evaluate their immunostimulatory and antitumor effects.
在这里,我们提出了一种基于细菌膜材料的两种纳米载体的构建和使用方案,用于癌症疫苗的递呈。癌症疫苗通过触发针对肿瘤新抗原的特异性 T 细胞反应诱导肿瘤消退,纳米载体递呈可以增强这一过程。受机体天然免疫防御细菌入侵的启发,我们分别开发了两种基于细菌膜材料的纳米载体,一种是利用基因工程外膜囊泡(OMVs),另一种是含有细菌细胞质膜的混合膜囊泡。基于 OMV 的纳米载体可以通过表面修饰的 Plug-and-Display 系统快速展示不同的肿瘤抗原,适用于肿瘤新抗原可识别的定制癌症疫苗。基于混合膜的纳米载体是通过融合细菌细胞质膜和从手术切除的肿瘤组织中提取的原代肿瘤细胞膜制备的,当新抗原不易获得时,作为个性化癌症疫苗具有独特的优势。与不具有内在佐剂特性的化学合成纳米载体(如脂质体和聚合物)相比,由于大量的病原体相关分子模式,这两种纳米载体在递呈多种抗原的同时可以激活抗原呈递细胞,从而诱导有效的抗原呈递和强大的适应性免疫激活。除了细菌培养和肿瘤组织收集外,OMV 和混合膜纳米载体的制备分别需要约 8 小时和 10 小时用于肿瘤疫苗的构建。我们还详细介绍了如何使用这些纳米载体来构建癌症纳米疫苗,并评估了它们的免疫刺激和抗肿瘤作用。
Cancer Biol Med. 2022-9-23
Biomed Pharmacother. 2024-1
Appl Environ Microbiol. 2018-4-2
Bioact Mater. 2025-6-30
Front Bioeng Biotechnol. 2025-5-1
J Hematol Oncol. 2025-4-17
Appl Microbiol Biotechnol. 2025-4-7
Adv Drug Deliv Rev. 2021-9
Nat Rev Mater. 2021
Nat Rev Clin Oncol. 2021-4