Suppr超能文献

噪声 2 上下文:用于低剂量 CT 的 3D 薄层辅助学习上下文。

Noise2Context: Context-assisted learning 3D thin-layer for low-dose CT.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA, USA.

出版信息

Med Phys. 2021 Oct;48(10):5794-5803. doi: 10.1002/mp.15119. Epub 2021 Aug 25.

Abstract

PURPOSE

Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of x-ray radiation exposure attract more and more attention. To lower the x-ray radiation, low-dose CT (LDCT) has been widely adopted in certain scenarios, while it will induce the degradation of CT image quality. In this paper, we proposed a deep learning-based method that can train denoising neural networks without any clean data.

METHODS

In this work, for 3D thin-slice LDCT scanning, we first drive an unsupervised loss function which was equivalent to a supervised loss function with paired noisy and clean samples when the noise in the different slices from a single scan was uncorrelated and zero-mean. Then, we trained the denoising neural network to map one noise LDCT image to its two adjacent LDCT images in a single 3D thin-layer LDCT scanning, simultaneously. In essence, with some latent assumptions, we proposed an unsupervised loss function to train the denoising neural network in an unsupervised manner, which integrated the similarity between adjacent CT slices in 3D thin-layer LDCT.

RESULTS

Further experiments on Mayo LDCT dataset and a realistic pig head were carried out. In the experiments using Mayo LDCT dataset, our unsupervised method can obtain performance comparable to that of the supervised baseline. With the realistic pig head, our method can achieve optimal performance at different noise levels as compared to all the other methods that demonstrated the superiority and robustness of the proposed Noise2Context.

CONCLUSIONS

In this work, we present a generalizable LDCT image denoising method without any clean data. As a result, our method not only gets rid of the complex artificial image priors but also amounts of paired high-quality training datasets.

摘要

目的

计算机断层扫描(CT)在医学诊断、评估和治疗计划等方面发挥了重要作用。在临床实践中,人们越来越关注 X 射线辐射的增加。为了降低 X 射线辐射,低剂量 CT(LDCT)已在某些情况下广泛应用,但这会导致 CT 图像质量下降。在本文中,我们提出了一种基于深度学习的方法,可以在没有任何清洁数据的情况下训练去噪神经网络。

方法

在这项工作中,对于 3D 薄层 LDCT 扫描,我们首先驱动一个无监督损失函数,当来自单次扫描的不同切片中的噪声是不相关且均值为零时,该函数等效于具有配对的噪声和清洁样本的监督损失函数。然后,我们训练去噪神经网络以同时将一个噪声 LDCT 图像映射到单次 3D 薄层 LDCT 扫描中的两个相邻 LDCT 图像。从本质上讲,通过一些潜在的假设,我们提出了一种无监督损失函数,以无监督的方式训练去噪神经网络,该函数集成了 3D 薄层 LDCT 中相邻 CT 切片之间的相似性。

结果

在 Mayo LDCT 数据集和真实的猪头进行了进一步的实验。在使用 Mayo LDCT 数据集的实验中,我们的无监督方法可以获得与有监督基线相当的性能。使用真实的猪头,与其他所有方法相比,我们的方法可以在不同噪声水平下达到最佳性能,这证明了所提出的 Noise2Context 的优越性和鲁棒性。

结论

在这项工作中,我们提出了一种通用的 LDCT 图像去噪方法,无需任何清洁数据。因此,我们的方法不仅摆脱了复杂的人工图像先验,而且还摆脱了大量的配对高质量训练数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验