Suppr超能文献

双尺度相似性引导的循环生成对抗网络用于无监督的低剂量 CT 去噪。

Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising.

机构信息

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China.

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China.

出版信息

Comput Biol Med. 2023 Jul;161:107029. doi: 10.1016/j.compbiomed.2023.107029. Epub 2023 May 13.

Abstract

Removing the noise in low-dose CT (LDCT) is crucial to improving the diagnostic quality. Previously, many supervised or unsupervised deep learning-based LDCT denoising algorithms have been proposed. Unsupervised LDCT denoising algorithms are more practical than supervised ones since they do not need paired samples. However, unsupervised LDCT denoising algorithms are rarely used clinically due to their unsatisfactory denoising ability. In unsupervised LDCT denoising, the lack of paired samples makes the direction of gradient descent full of uncertainty. On the contrary, paired samples used in supervised denoising allow the parameters of networks to have a clear direction of gradient descent. To bridge the gap in performance between unsupervised and supervised LDCT denoising, we propose dual-scale similarity-guided cycle generative adversarial network (DSC-GAN). DSC-GAN uses similarity-based pseudo-pairing to better accomplish unsupervised LDCT denoising. We design a Vision Transformer-based global similarity descriptor and a residual neural network-based local similarity descriptor for DSC-GAN to effectively describe the similarity between two samples. During training, pseudo-pairs, i.e., similar LDCT samples and normal-dose CT (NDCT) samples, dominate parameter updates. Thus, the training can achieve equivalent effect as training with paired samples. Experiments on two datasets demonstrate that DSC-GAN beats the state-of-the-art unsupervised algorithms and reaches a level close to supervised LDCT denoising algorithms.

摘要

去除低剂量 CT(LDCT)中的噪声对于提高诊断质量至关重要。此前,已经提出了许多基于监督或无监督深度学习的 LDCT 去噪算法。由于不需要配对样本,无监督 LDCT 去噪算法比监督算法更实用。然而,由于其去噪能力不尽如人意,无监督 LDCT 去噪算法在临床上很少使用。在无监督 LDCT 去噪中,缺乏配对样本使得梯度下降的方向充满不确定性。相反,监督去噪中使用的配对样本允许网络的参数具有明确的梯度下降方向。为了弥合无监督和监督 LDCT 去噪之间的性能差距,我们提出了双尺度相似性引导循环生成对抗网络(DSC-GAN)。DSC-GAN 使用基于相似性的伪配对来更好地完成无监督 LDCT 去噪。我们为 DSC-GAN 设计了基于 Vision Transformer 的全局相似性描述符和基于残差神经网络的局部相似性描述符,以有效地描述两个样本之间的相似性。在训练过程中,伪对,即相似的 LDCT 样本和正常剂量 CT(NDCT)样本,主导参数更新。因此,训练可以达到与使用配对样本训练相同的效果。在两个数据集上的实验表明,DSC-GAN 优于最先进的无监督算法,并达到接近监督 LDCT 去噪算法的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验