Moya-Jódar Marta, Coppiello Giulia, Rodríguez-Madoz Juan Roberto, Abizanda Gloria, Barlabé Paula, Vilas-Zornoza Amaia, Ullate-Agote Asier, Luongo Chiara, Rodríguez-Tobón Ernesto, Navarro-Serna Sergio, París-Oller Evelyne, Oficialdegui Maria, Carvajal-Vergara Xonia, Ordovás Laura, Prósper Felipe, García-Vázquez Francisco Alberto, Aranguren Xabier L
Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain.
Advanced Genomics Laboratory, Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
Animals (Basel). 2022 Jul 18;12(14):1829. doi: 10.3390/ani12141829.
Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs.
每年,由于可用于移植的器官有限,全球数以万计的人死于终末期器官衰竭。为满足这一临床需求,再生医学的最后前沿领域之一是通过囊胚互补从多能干细胞(PSC)在猪体内生成人源化器官。为此,需要器官功能缺失的猪模型。由于内皮细胞(EC)在每个器官的异种移植排斥中都起着关键作用,我们旨在通过CRISPR-Cas9介导的基因组修饰,产生针对主转录因子的造血内皮功能缺失的猪胚胎。在本研究中,我们针对猪基因的DNA结合结构域设计了五种不同的引导RNA(gRNA),并在猪成纤维细胞上进行了体外测试。五种引导RNA中有四种显示出切割能力,随后,将这四种引导RNA作为核糖核蛋白复合物(RNP)分别显微注射到单细胞期猪胚胎中。接下来,我们将靶向效率最高的两种gRNA组合起来,并以更高的浓度进行显微注射。在这些条件下,我们显著提高了双等位基因突变率。因此,在此我们描述了一种通过向受精卵中显微注射CRISPR-Cas9来高效一步生成造血内皮功能缺失猪胚胎的方法。该模型可用于与体内生成人源化器官相关的实验。