Perrone Mariasole, Raimondi Edoardo, Costa Matilde, Rasetto Gianluca, Rizzati Roberto, Lanza Giovanni, Gafà Roberta, Cavallesco Giorgio, Tamburini Nicola, Maniscalco Pio, Mantovani Maria Cristina, Tebano Umberto, Coeli Manuela, Missiroli Sonia, Tilli Massimo, Pinton Paolo, Giorgi Carlotta, Fiorica Francesco
Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
Radiology Division, SS.ma Annunziata Hospital, Azienda USL di Ferrara, 44121 Ferrara, Italy.
Cancers (Basel). 2022 Jul 8;14(14):3335. doi: 10.3390/cancers14143335.
Patient prognosis is a critical consideration in the treatment decision-making process. Conventionally, patient outcome is related to tumor characteristics, the cancer spread, and the patients' conditions. However, unexplained differences in survival time are often observed, even among patients with similar clinical and molecular tumor traits. This study investigated how inflammatory radiomic features can correlate with evidence-based biological analyses to provide translated value in assessing clinical outcomes in patients with NSCLC. We analyzed a group of 15 patients with stage I NSCLC who showed extremely different OS outcomes despite apparently harboring the same tumor characteristics. We thus analyzed the inflammatory levels in their tumor microenvironment (TME) either biologically or radiologically, focusing our attention on the NLRP3 cancer-dependent inflammasome pathway. We determined an NLRP3-dependent peritumoral inflammatory status correlated with the outcome of NSCLC patients, with markedly increased OS in those patients with a low rate of NLRP3 activation. We consistently extracted specific radiomic signatures that perfectly discriminated patients' inflammatory levels and, therefore, their clinical outcomes. We developed and validated a radiomic model unleashing quantitative inflammatory features from CT images with an excellent performance to predict the evolution pattern of NSCLC tumors for a personalized and accelerated patient management in a non-invasive way.
患者预后是治疗决策过程中的关键考量因素。传统上,患者的预后与肿瘤特征、癌症扩散情况以及患者自身状况相关。然而,即使在具有相似临床和分子肿瘤特征的患者中,也经常观察到生存时间存在无法解释的差异。本研究调查了炎症性影像组学特征如何与基于证据的生物学分析相关联,从而在评估非小细胞肺癌(NSCLC)患者的临床结局时提供转化价值。我们分析了一组15例I期NSCLC患者,尽管他们明显具有相同的肿瘤特征,但却表现出截然不同的总生存期(OS)结果。因此,我们从生物学或放射学角度分析了他们肿瘤微环境(TME)中的炎症水平,重点关注NLRP3癌症相关炎性小体途径。我们确定了一种依赖NLRP3的肿瘤周围炎症状态与NSCLC患者的预后相关,NLRP3激活率低的患者的OS显著延长。我们持续提取了特定的影像组学特征,这些特征能够完美地区分患者的炎症水平,进而区分他们的临床结局。我们开发并验证了一种影像组学模型,该模型能够从CT图像中释放定量的炎症特征,具有出色的性能,可用于以非侵入性方式预测NSCLC肿瘤的演变模式,从而实现个性化和加速的患者管理。