Suppr超能文献

机器学习模型与多参数磁共振成像用于预测乳腺癌新辅助化疗的病理反应

Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer.

作者信息

Herrero Vicent Carmen, Tudela Xavier, Moreno Ruiz Paula, Pedralva Víctor, Jiménez Pastor Ana, Ahicart Daniel, Rubio Novella Silvia, Meneu Isabel, Montes Albuixech Ángela, Santamaria Miguel Ángel, Fonfria María, Fuster-Matanzo Almudena, Olmos Antón Santiago, Martínez de Dueñas Eduardo

机构信息

Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain.

Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain.

出版信息

Cancers (Basel). 2022 Jul 19;14(14):3508. doi: 10.3390/cancers14143508.

Abstract

BACKGROUND

Most breast cancer (BC) patients fail to achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). The aim of this study was to evaluate whether imaging features (perfusion/diffusion imaging biomarkers + radiomic features) extracted from pre-treatment multiparametric (mp)MRIs were able to predict, alone or in combination with clinical data, pCR to NAC.

METHODS

Patients with stage II-III BC receiving NAC and undergoing breast mpMRI were retrospectively evaluated. Imaging features were extracted from mpMRIs performed before NAC. Three different machine learning models based on imaging features, clinical data or imaging features + clinical data were trained to predict pCR. Confusion matrices and performance metrics were obtained to assess model performance. Statistical analyses were conducted to evaluate differences between responders and non-responders.

RESULTS

Fifty-eight patients (median [range] age, 52 [45-58] years) were included, of whom 12 showed pCR. The combined model improved pCR prediction compared to clinical and imaging models, yielding 91.5% of accuracy with no false positive cases and only 17% false negative results. Changes in different parameters between responders and non-responders suggested a possible increase in vascularity and reduced tumour heterogeneity in patients with pCR, with the percentile 25th of time-to-peak (TTP), a classical perfusion parameter, being able to discriminate both groups in a 75% of the cases.

CONCLUSIONS

A combination of mpMRI-derived imaging features and clinical variables was able to successfully predict pCR to NAC. Specific patient profiles according to tumour vascularity and heterogeneity might explain pCR differences, where TTP could emerge as a putative surrogate marker for pCR.

摘要

背景

大多数乳腺癌(BC)患者在新辅助化疗(NAC)后未能实现病理完全缓解(pCR)。本研究的目的是评估从治疗前多参数(mp)MRI中提取的影像特征(灌注/扩散成像生物标志物+放射组学特征)能否单独或与临床数据相结合预测NAC后的pCR。

方法

对接受NAC并进行乳腺mpMRI检查的II-III期BC患者进行回顾性评估。从NAC前进行的mpMRI中提取影像特征。训练了三种基于影像特征、临床数据或影像特征+临床数据的不同机器学习模型来预测pCR。获得混淆矩阵和性能指标以评估模型性能。进行统计分析以评估反应者和非反应者之间的差异。

结果

纳入58例患者(中位[范围]年龄,52[45-58]岁),其中12例显示pCR。与临床和影像模型相比,联合模型改善了pCR预测,准确率达91.5%,无假阳性病例且假阴性结果仅17%。反应者和非反应者之间不同参数的变化表明pCR患者血管可能增加且肿瘤异质性降低,经典灌注参数达峰时间(TTP)的第25百分位数在75%的病例中能够区分两组。

结论

mpMRI衍生的影像特征和临床变量的组合能够成功预测NAC后的pCR。根据肿瘤血管和异质性的特定患者特征可能解释pCR差异,其中TTP可能成为pCR的推定替代标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72cd/9317428/93bdef17cdb3/cancers-14-03508-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验