Rodríguez-Ruiz Julieta G, Galván-Tejada Carlos E, Luna-García Huizilopoztli, Gamboa-Rosales Hamurabi, Celaya-Padilla José M, Arceo-Olague José G, Galván Tejada Jorge I
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
CONACYT, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
Healthcare (Basel). 2022 Jul 5;10(7):1256. doi: 10.3390/healthcare10071256.
Major depressive disorder (MDD) is the most recurrent mental illness globally, affecting approximately 5% of adults. Furthermore, according to the National Institute of Mental Health (NIMH) of the U.S., calculating an actual schizophrenia prevalence rate is challenging because of this illness's underdiagnosis. Still, most current global metrics hover between 0.33% and 0.75%. Machine-learning scientists use data from diverse sources to analyze, classify, or predict to improve the psychiatric attention, diagnosis, and treatment of MDD, schizophrenia, and other psychiatric conditions. Motor activity data are gaining popularity in mental illness diagnosis assistance because they are a cost-effective and noninvasive method. In the knowledge discovery in databases (KDD) framework, a model to classify depressive and schizophrenic patients from healthy controls is constructed using accelerometer data. Taking advantage of the multiple sleep disorders caused by mental disorders, the main objective is to increase the model's accuracy by employing only data from night-time activity. To compare the classification between the stages of the day and improve the accuracy of the classification, the total activity signal was cut into hourly time lapses and then grouped into subdatasets depending on the phases of the day: morning (06:00-11:59), afternoon (12:00-17:59), evening (18:00-23:59), and night (00:00-05:59). Random forest classifier (RFC) is the algorithm proposed for multiclass classification, and it uses accuracy, recall, precision, the Matthews correlation coefficient, and F1 score to measure its efficiency. The best model was night-featured data and RFC, with 98% accuracy for the classification of three classes. The effectiveness of this experiment leads to less monitoring time for patients, reducing stress and anxiety, producing more efficient models, using wearables, and increasing the amount of data.
重度抑郁症(MDD)是全球最常见的精神疾病,影响着约5%的成年人。此外,根据美国国立精神卫生研究所(NIMH)的数据,由于精神分裂症的诊断不足,计算其实际患病率具有挑战性。不过,目前大多数全球指标在0.33%至0.75%之间徘徊。机器学习科学家利用来自不同来源的数据进行分析、分类或预测,以改善对MDD、精神分裂症和其他精神疾病的心理关注、诊断和治疗。运动活动数据在精神疾病诊断辅助中越来越受欢迎,因为它们是一种经济高效且非侵入性的方法。在数据库知识发现(KDD)框架中,使用加速度计数据构建了一个从健康对照中分类抑郁和精神分裂症患者的模型。利用精神障碍引起的多种睡眠障碍,主要目标是仅使用夜间活动数据来提高模型的准确性。为了比较一天中不同阶段的分类并提高分类准确性,将总活动信号切成每小时的时间间隔,然后根据一天中的阶段分为子数据集:早晨(06:00 - 11:59)、下午(12:00 - 17:59)、晚上(18:00 - 23:59)和夜间(00:00 - 05:59)。随机森林分类器(RFC)是为多类分类提出的算法,它使用准确率、召回率、精确率、马修斯相关系数和F1分数来衡量其效率。最佳模型是具有夜间特征的数据和RFC,对三类分类的准确率为98%。该实验的有效性导致患者的监测时间减少,减轻了压力和焦虑,产生了更高效的模型,使用了可穿戴设备,并增加了数据量。