Rodríguez-Ruiz Julieta G, Galván-Tejada Carlos E, Zanella-Calzada Laura A, Celaya-Padilla José M, Galván-Tejada Jorge I, Gamboa-Rosales Hamurabi, Luna-García Huizilopoztli, Magallanes-Quintanar Rafael, Soto-Murillo Manuel A
Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
LORIA, Université de Lorraine, Campus Scientifique BP 239, 54506 Nancy, France.
Diagnostics (Basel). 2020 Mar 17;10(3):162. doi: 10.3390/diagnostics10030162.
Major Depression Disease has been increasing in the last few years, affecting around 7 percent of the world population, but nowadays techniques to diagnose it are outdated and inefficient. Motor activity data in the last decade is presented as a better way to diagnose, treat and monitor patients suffering from this illness, this is achieved through the use of machine learning algorithms. Disturbances in the circadian rhythm of mental illness patients increase the effectiveness of the data mining process. In this paper, a comparison of motor activity data from the night, day and full day is carried out through a data mining process using the Random Forest classifier to identified depressive and non-depressive episodes. Data from Depressjon dataset is split into three different subsets and 24 features in time and frequency domain are extracted to select the best model to be used in the classification of depression episodes. The results showed that the best dataset and model to realize the classification of depressive episodes is the night motor activity data with 99.37% of sensitivity and 99.91% of specificity.
在过去几年中,重度抑郁症的发病率一直在上升,影响着全球约7%的人口,但如今诊断该疾病的技术已经过时且效率低下。过去十年的运动活动数据被视为诊断、治疗和监测患有这种疾病的患者的更好方法,这是通过使用机器学习算法实现的。精神疾病患者昼夜节律的紊乱提高了数据挖掘过程的有效性。在本文中,通过使用随机森林分类器的数据挖掘过程,对夜间、白天和全天的运动活动数据进行了比较,以识别抑郁和非抑郁发作。来自Depressjon数据集的数据被分成三个不同的子集,并在时域和频域中提取24个特征,以选择用于抑郁发作分类的最佳模型。结果表明,用于实现抑郁发作分类的最佳数据集和模型是夜间运动活动数据,其灵敏度为99.37%,特异性为99.91%。