Díez-Pascual Ana M, Rahdar Abbas
Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
Department of Physics, University of Zabol, Zabol P.O. Box 98613-35856, Iran.
Micromachines (Basel). 2022 Jul 16;13(7):1123. doi: 10.3390/mi13071123.
Graphene-based nanomaterials have gained a lot of interest over the last years in flexible electronics due to their exceptional electrical, mechanical, and optoelectronic properties, as well as their potential of surface modification. Their flexibility and processability make them suitable for electronic devices that require bending, folding, and stretching, which cannot be fulfilled by conventional electronics. These nanomaterials can be assembled with various types of organic materials, including polymers, and biomolecules, to generate a variety of nanocomposites with greater stretchability and healability, higher stiffness, electrical conductivity, and exceptional thermal stability for flexible lighting and display technologies. This article summarizes the main characteristics and synthesis methods of graphene, its oxidized form graphene oxide (GO), and reduced GO derivative, as well as their corresponding polymeric composites, and provides a brief overview about some recent examples of these nanocomposites in flexible electronic applications, including electrodes for solar cells and supercapacitors, electronic textiles, and transistors.
近年来,基于石墨烯的纳米材料因其优异的电学、力学和光电性能以及表面改性潜力,在柔性电子领域引起了广泛关注。它们的柔韧性和可加工性使其适用于需要弯曲、折叠和拉伸的电子设备,而传统电子产品无法实现这些功能。这些纳米材料可以与包括聚合物和生物分子在内的各种有机材料组装在一起,以生成具有更大拉伸性和自愈性、更高刚度、导电性以及用于柔性照明和显示技术的卓越热稳定性的各种纳米复合材料。本文总结了石墨烯、其氧化形式氧化石墨烯(GO)和还原GO衍生物的主要特性和合成方法,以及它们相应的聚合物复合材料,并简要概述了这些纳米复合材料在柔性电子应用中的一些最新实例,包括用于太阳能电池和超级电容器的电极、电子纺织品和晶体管。