Suppr超能文献

SM-SegNet:一种用于脑 MRI 扫描中组织分割的轻量级挤压 M-SegNet。

SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans.

机构信息

Department of Electronics and Communications Engineering, CHRIST University, Bangalore 560029, India.

Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea.

出版信息

Sensors (Basel). 2022 Jul 8;22(14):5148. doi: 10.3390/s22145148.

Abstract

In this paper, we propose a novel squeeze M-SegNet (SM-SegNet) architecture featuring a fire module to perform accurate as well as fast segmentation of the brain on magnetic resonance imaging (MRI) scans. The proposed model utilizes uniform input patches, combined-connections, long skip connections, and squeeze-expand convolutional layers from the fire module to segment brain MRI data. The proposed SM-SegNet architecture involves a multi-scale deep network on the encoder side and deep supervision on the decoder side, which uses combined-connections (skip connections and pooling indices) from the encoder to the decoder layer. The multi-scale side input layers support the deep network layers' extraction of discriminative feature information, and the decoder side provides deep supervision to reduce the gradient problem. By using combined-connections, extracted features can be transferred from the encoder to the decoder resulting in recovering spatial information, which makes the model converge faster. Long skip connections were used to stabilize the gradient updates in the network. Owing to the adoption of the fire module, the proposed model was significantly faster to train and offered a more efficient memory usage with 83% fewer parameters than previously developed methods, owing to the adoption of the fire module. The proposed method was evaluated using the open-access series of imaging studies (OASIS) and the internet brain segmentation registry (IBSR) datasets. The experimental results demonstrate that the proposed SM-SegNet architecture achieves segmentation accuracies of 95% for cerebrospinal fluid, 95% for gray matter, and 96% for white matter, which outperforms the existing methods in both subjective and objective metrics in brain MRI segmentation.

摘要

在本文中,我们提出了一种新颖的挤压 M-SegNet(SM-SegNet)架构,该架构具有火灾模块,可对磁共振成像(MRI)扫描中的大脑进行准确且快速的分割。所提出的模型利用均匀的输入补丁、组合连接、长跳过连接以及火灾模块中的挤压扩展卷积层来分割脑 MRI 数据。所提出的 SM-SegNet 架构在编码器侧具有多尺度深度网络,在解码器侧具有深度监督,该深度监督使用来自编码器到解码器层的组合连接(跳过连接和池索引)。多尺度侧输入层支持深度网络层提取判别特征信息,解码器侧提供深度监督以减少梯度问题。通过使用组合连接,可以将从编码器提取的特征传输到解码器,从而恢复空间信息,从而使模型更快收敛。长跳过连接用于稳定网络中的梯度更新。由于采用了火灾模块,与以前开发的方法相比,所提出的模型训练速度明显更快,并且由于采用了火灾模块,因此具有更高的效率和 83%的参数量减少。该方法使用开放获取成像研究系列(OASIS)和互联网大脑分割注册表(IBSR)数据集进行了评估。实验结果表明,所提出的 SM-SegNet 架构在脑 MRI 分割的主观和客观指标方面均优于现有方法,达到了脑脊液 95%、灰质 95%和白质 96%的分割精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd74/9319649/a2c9fc4a2e76/sensors-22-05148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验