Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France; Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique de Paris-Saclay, 91190 Gif-sur-Yvette, France; Université Paris Cité, Université Sorbonne Paris Nord, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France.
Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, 91190 Gif-sur-Yvette, France.
Biomater Adv. 2022 Aug;139:212973. doi: 10.1016/j.bioadv.2022.212973. Epub 2022 Jun 6.
Freeze-drying is a process of choice to texture hydrogel scaffolds with pores formed by an ice-templating mechanism. Using state-of-the-art microscopies (cryo-EBSD, μCT, CLSM), this work evidences and quantifies the effect of crosslinking and ice nucleation temperature on the porous structure of thin hydrogel scaffolds freeze-dried at a low cooling rate. We focused on a polysaccharide-based hydrogel and developed specific protocols to monitor or trigger ice nucleation for this study. At a fixed number of intermolecular crosslinks per primary molecule (p = 5), the mean pore size in the dry state decreases linearly from 240 to 170 μm, when ice nucleation temperature decreases from -6 °C to -18 °C. When ice nucleation temperature is fixed at -10 °C, the mean pore size decreases from 250 to 150 μm, as the crosslinking degree increases from p = 3 to p = 7. Scaffold infiltration ability was quantified with synthetic microspheres. The seeding efficiency was assessed with MC3T3-E1 individual cells and HepaRG™ spheroids. These data collapse into a single master curve that exhibits a sharp transition from 100 % to 0 %-efficiency as the entity diameter approaches the mean pore size in the dry state. Altogether, we can thus precisely tune the porosity of these 3D materials of interest for 3D cell culture and cGMP production for tissue engineering.
冷冻干燥是一种通过冰模板机制形成孔的水凝胶支架的选择过程。本工作使用最先进的显微镜(冷冻电子背散射衍射、μCT、CLSM),证明并量化了交联和冰成核温度对低冷却速率下冻干的薄水凝胶支架多孔结构的影响。我们专注于一种基于多糖的水凝胶,并开发了特定的方案来监测或触发这种研究中的冰成核。在每个初级分子的固定交联数(p=5)下,当冰成核温度从-6°C降低到-18°C时,干燥状态下的平均孔径从 240μm线性减小到 170μm。当冰成核温度固定在-10°C时,随着交联度从 p=3 增加到 p=7,平均孔径从 250μm 减小到 150μm。支架的渗透能力用合成微球进行了量化。用 MC3T3-E1 单个细胞和 HepaRG™球体评估了接种效率。这些数据可以合并为一条单一的主曲线,该曲线在实体直径接近干燥状态下的平均孔径时,从 100%效率急剧转变为 0%效率。总之,我们可以精确地调节这些对于 3D 细胞培养和组织工程中 CGMP 生产有兴趣的 3D 材料的孔隙率。