Suppr超能文献

多通道神经记录植入物:综述。

Multi-Channel Neural Recording Implants: A Review.

机构信息

Polystim Neurotech. Lab., Department of Electrical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada.

School of Engineering, Westlake University, Hangzhou 310024, China.

出版信息

Sensors (Basel). 2020 Feb 7;20(3):904. doi: 10.3390/s20030904.

Abstract

The recently growing progress in neuroscience research and relevant achievements, as well as advancements in the fabrication process, have increased the demand for neural interfacing systems. Brain-machine interfaces (BMIs) have been revealed to be a promising method for the diagnosis and treatment of neurological disorders and the restoration of sensory and motor function. Neural recording implants, as a part of BMI, are capable of capturing brain signals, and amplifying, digitizing, and transferring them outside of the body with a transmitter. The main challenges of designing such implants are minimizing power consumption and the silicon area. In this paper, multi-channel neural recording implants are surveyed. After presenting various neural-signal features, we investigate main available neural recording circuit and system architectures. The fundamental blocks of available architectures, such as neural amplifiers, analog to digital converters (ADCs) and compression blocks, are explored. We cover the various topologies of neural amplifiers, provide a comparison, and probe their design challenges. To achieve a relatively high SNR at the output of the neural amplifier, noise reduction techniques are discussed. Also, to transfer neural signals outside of the body, they are digitized using data converters, then in most cases, the data compression is applied to mitigate power consumption. We present the various dedicated ADC structures, as well as an overview of main data compression methods.

摘要

神经科学研究的最新进展和相关成果,以及制造工艺的进步,增加了对神经接口系统的需求。脑机接口(BMI)被证明是诊断和治疗神经疾病以及恢复感觉和运动功能的一种有前途的方法。神经记录植入物作为 BMI 的一部分,能够捕获脑信号,并通过发射器对其进行放大、数字化和传输到体外。设计这种植入物的主要挑战是最小化功耗和硅面积。本文对多通道神经记录植入物进行了调查。在介绍了各种神经信号特征之后,我们研究了主要的可用神经记录电路和系统架构。可用架构的基本模块,如神经放大器、模数转换器(ADC)和压缩块,都进行了探讨。我们涵盖了各种神经放大器的拓扑结构,提供了比较,并探讨了它们的设计挑战。为了在神经放大器的输出端获得相对较高的信噪比,讨论了降噪技术。此外,为了将神经信号传输到体外,使用数据转换器对其进行数字化,然后在大多数情况下,应用数据压缩来降低功耗。我们介绍了各种专用 ADC 结构,以及主要数据压缩方法的概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f758/7038972/a26d3b454897/sensors-20-00904-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验