Suppr超能文献

基于孤立卷积神经网络的深度特征提取用于使用浅层分类器的脑肿瘤分类

Isolated Convolutional-Neural-Network-Based Deep-Feature Extraction for Brain Tumor Classification Using Shallow Classifier.

作者信息

Almalki Yassir Edrees, Ali Muhammad Umair, Kallu Karam Dad, Masud Manzar, Zafar Amad, Alduraibi Sharifa Khalid, Irfan Muhammad, Basha Mohammad Abd Alkhalik, Alshamrani Hassan A, Alduraibi Alaa Khalid, Aboualkheir Mervat

机构信息

Division of Radiology, Department of Internal Medicine, Medical College, Najran University, Najran 61441, Saudi Arabia.

Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Korea.

出版信息

Diagnostics (Basel). 2022 Jul 24;12(8):1793. doi: 10.3390/diagnostics12081793.

Abstract

In today's world, a brain tumor is one of the most serious diseases. If it is detected at an advanced stage, it might lead to a very limited survival rate. Therefore, brain tumor classification is crucial for appropriate therapeutic planning to improve patient life quality. This research investigates a deep-feature-trained brain tumor detection and differentiation model using classical/linear machine learning classifiers (MLCs). In this study, transfer learning is used to obtain deep brain magnetic resonance imaging (MRI) scan features from a constructed convolutional neural network (CNN). First, multiple layers (19, 22, and 25) of isolated CNNs are constructed and trained to evaluate the performance. The developed CNN models are then utilized for training the multiple MLCs by extracting deep features via transfer learning. The available brain MRI datasets are employed to validate the proposed approach. The deep features of pre-trained models are also extracted to evaluate and compare their performance with the proposed approach. The proposed CNN deep-feature-trained support vector machine model yielded higher accuracy than other commonly used pre-trained deep-feature MLC training models. The presented approach detects and distinguishes brain tumors with 98% accuracy. It also has a good classification rate (97.2%) for an unknown dataset not used to train the model. Following extensive testing and analysis, the suggested technique might be helpful in assisting doctors in diagnosing brain tumors.

摘要

在当今世界,脑肿瘤是最严重的疾病之一。如果在晚期才被发现,其生存率可能会非常低。因此,脑肿瘤分类对于制定合适的治疗方案以提高患者生活质量至关重要。本研究使用经典/线性机器学习分类器(MLC),对一个经过深度特征训练的脑肿瘤检测与鉴别模型进行了研究。在本研究中,迁移学习被用于从构建的卷积神经网络(CNN)中获取脑磁共振成像(MRI)扫描的深度特征。首先,构建并训练了多层(19层、22层和25层)独立的CNN,以评估其性能。然后,通过迁移学习提取深度特征,利用所开发的CNN模型来训练多个MLC。使用现有的脑MRI数据集来验证所提出的方法。还提取了预训练模型的深度特征,以评估其性能并与所提出的方法进行比较。所提出的经过CNN深度特征训练的支持向量机模型比其他常用的预训练深度特征MLC训练模型具有更高的准确率。所提出的方法检测和区分脑肿瘤的准确率达到98%。对于未用于训练模型的未知数据集,其分类率也很高(97.2%)。经过广泛的测试和分析,所建议的技术可能有助于协助医生诊断脑肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/375e/9331664/7b6ace14e5cf/diagnostics-12-01793-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验