Department of Computer & Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan.
Pattern Recognition Lab, (DCIS), PIEAS, Islamabad 45650, Pakistan.
Sensors (Basel). 2022 Apr 1;22(7):2726. doi: 10.3390/s22072726.
Brain tumor analysis is essential to the timely diagnosis and effective treatment of patients. Tumor analysis is challenging because of tumor morphology factors like size, location, texture, and heteromorphic appearance in medical images. In this regard, a novel two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs). In the first phase, a novel deep-boosted features space and ensemble classifiers (DBFS-EC) scheme is proposed to effectively detect tumor MRI images from healthy individuals. The deep-boosted feature space is achieved through customized and well-performing deep convolutional neural networks (CNNs), and consequently, fed into the ensemble of machine learning (ML) classifiers. While in the second phase, a new hybrid features fusion-based brain-tumor classification approach is proposed, comprised of both static and dynamic features with an ML classifier to categorize different tumor types. The dynamic features are extracted from the proposed brain region-edge net (BRAIN-RENet) CNN, which is able to learn the heteromorphic and inconsistent behavior of various tumors. In contrast, the static features are extracted by using a histogram of gradients (HOG) feature descriptor. The effectiveness of the proposed two-phase brain tumor analysis framework is validated on two standard benchmark datasets, which were collected from Kaggle and Figshare and contain different types of tumors, including glioma, meningioma, pituitary, and normal images. Experimental results suggest that the proposed DBFS-EC detection scheme outperforms the standard and achieved accuracy (99.56%), precision (0.9991), recall (0.9899), F1-Score (0.9945), MCC (0.9892), and AUC-PR (0.9990). The classification scheme, based on the fusion of feature spaces of proposed BRAIN-RENet and HOG, outperform state-of-the-art methods significantly in terms of recall (0.9913), precision (0.9906), accuracy (99.20%), and F1-Score (0.9909) in the CE-MRI dataset.
脑肿瘤分析对于及时诊断和有效治疗患者至关重要。由于医学图像中肿瘤的形态学因素,如大小、位置、纹理和异质外观,肿瘤分析具有挑战性。在这方面,提出了一种新的基于两阶段深度学习的框架,用于检测和分类磁共振成像(MRI)中的脑肿瘤。在第一阶段,提出了一种新的深度增强特征空间和集成分类器(DBFS-EC)方案,用于从健康个体中有效地检测肿瘤 MRI 图像。深度增强特征空间是通过定制和性能良好的深度卷积神经网络(CNN)实现的,然后将其输入到机器学习(ML)分类器的集合中。而在第二阶段,提出了一种新的基于混合特征融合的脑肿瘤分类方法,该方法由静态和动态特征组成,结合 ML 分类器对不同类型的肿瘤进行分类。动态特征是从所提出的脑区域边缘网络(BRAIN-RENet)CNN 中提取的,该 CNN 能够学习各种肿瘤的异构和不一致行为。相比之下,静态特征是通过使用梯度直方图(HOG)特征描述符提取的。在两个标准基准数据集上验证了所提出的两阶段脑肿瘤分析框架的有效性,这些数据集分别从 Kaggle 和 Figshare 收集,包含不同类型的肿瘤,包括胶质瘤、脑膜瘤、垂体瘤和正常图像。实验结果表明,所提出的 DBFS-EC 检测方案优于标准方案,准确率(99.56%)、精度(0.9991)、召回率(0.9899)、F1 得分(0.9945)、MCC(0.9892)和 AUC-PR(0.9990)。基于所提出的 BRAIN-RENet 和 HOG 特征空间融合的分类方案在 CE-MRI 数据集的召回率(0.9913)、精度(0.9906)、准确率(99.20%)和 F1 得分(0.9909)方面明显优于最先进的方法。