文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症治疗应用的基于聚合物的混合纳米结构

Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications.

作者信息

Kumar Arun, Sharipov Mirkomil, Turaev Abbaskhan, Azizov Shavkatjon, Azizov Ismatdjan, Makhado Edwin, Rahdar Abbas, Kumar Deepak, Pandey Sadanand

机构信息

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India.

Department of Chemistry, Changwon National University, Changwon 51140, Korea.

出版信息

Polymers (Basel). 2022 Jul 26;14(15):3027. doi: 10.3390/polym14153027.


DOI:10.3390/polym14153027
PMID:35893988
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9370428/
Abstract

Globally, cancer is affecting societies and is becoming an important cause of death. Chemotherapy can be highly effective, but it is associated with certain problems, such as undesired targeting and multidrug resistance. The other advanced therapies, such as gene therapy and peptide therapy, do not prove to be effective without a proper delivery medium. Polymer-based hybrid nanoarchitectures have enormous potential in drug delivery. The polymers used in these nanohybrids (NHs)provide them with their distinct properties and also enable the controlled release of the drugs. This review features the recent use of polymers in the preparation of different nanohybrids for cancer therapy published since 2015 in some reputed journals. The polymeric nanohybrids provide an advantage in drug delivery with the controlled and targeted delivery of a payload and the irradiation of cancer by chemotherapeutical and photodynamic therapy.

摘要

在全球范围内,癌症正在影响各个社会,并日益成为一个重要的死亡原因。化疗可能非常有效,但它也伴随着某些问题,如靶向不理想和多药耐药性。其他先进疗法,如基因疗法和肽疗法,如果没有合适的递送介质,也无法证明是有效的。基于聚合物的杂化纳米结构在药物递送方面具有巨大潜力。这些纳米杂化物(NHs)中使用的聚合物赋予它们独特的性质,还能实现药物的控释。这篇综述重点介绍了自2015年以来在一些著名期刊上发表的关于聚合物在制备用于癌症治疗的不同纳米杂化物中的最新应用。聚合物纳米杂化物在药物递送方面具有优势,能够实现有效载荷的可控靶向递送,并通过化疗和光动力疗法对癌症进行照射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/a7bbf7597e51/polymers-14-03027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/57f4c7c68649/polymers-14-03027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/ff1b6aff267e/polymers-14-03027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/28aca3abf5b6/polymers-14-03027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/5c8ac4077491/polymers-14-03027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/8fea9ff268e9/polymers-14-03027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/7e883638e3b6/polymers-14-03027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/a20f6c3fbd31/polymers-14-03027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/c33ab37fbccd/polymers-14-03027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/a7bbf7597e51/polymers-14-03027-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/57f4c7c68649/polymers-14-03027-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/ff1b6aff267e/polymers-14-03027-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/28aca3abf5b6/polymers-14-03027-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/5c8ac4077491/polymers-14-03027-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/8fea9ff268e9/polymers-14-03027-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/7e883638e3b6/polymers-14-03027-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/a20f6c3fbd31/polymers-14-03027-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/c33ab37fbccd/polymers-14-03027-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfe/9370428/a7bbf7597e51/polymers-14-03027-g009.jpg

相似文献

[1]
Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications.

Polymers (Basel). 2022-7-26

[2]
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.

Eur J Pharm Biopharm. 2015-6

[3]
In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics.

Mol Pharm. 2012-12-31

[4]
Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics.

Int J Biol Macromol. 2022-6-15

[5]
Biodegradable polymers for targeted delivery of anti-cancer drugs.

Expert Opin Drug Deliv. 2016-6

[6]
Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery.

ACS Appl Mater Interfaces. 2014-7-16

[7]
Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery.

ACS Appl Mater Interfaces. 2014-10-8

[8]
Multifunctional hierarchical nanohybrids perform triple antitumor theranostics in a cascaded manner for effective tumor treatment.

Acta Biomater. 2021-7-1

[9]
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics.

Mikrochim Acta. 2022-2-3

[10]
Advanced polymeric/inorganic nanohybrids: An integrated platform for gas sensing applications.

Chemosphere. 2022-5

引用本文的文献

[1]
Synthetic niclosamide-loaded controlled-release nanospheres with high solubility and stability exerting multiple effects against .

Front Microbiol. 2025-7-30

[2]
PEGylated Nanoliposomes Encapsulated with Anticancer Drugs for Breast and Prostate Cancer Therapy: An Update.

Pharmaceutics. 2025-2-4

[3]
Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals.

Polymers (Basel). 2025-1-29

[4]
Nanobiomaterials: exploring mechanistic roles in combating microbial infections and cancer.

Discov Nano. 2023-12-20

[5]
Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines.

J Nanobiotechnology. 2023-11-29

[6]
Himalayan flora: targeting various molecular pathways in lung cancer.

Med Oncol. 2023-10-3

[7]
Advances in Nanotechnology for Biofilm Inhibition.

ACS Omega. 2023-6-7

[8]
Cetuximab enhances radiosensitivity of esophageal squamous cell carcinoma cells by G2/M cycle arrest and DNA repair delay through inhibiting p-EGFR and p-ERK.

Thorac Cancer. 2023-8

[9]
Therapeutic applications of nanobiotechnology.

J Nanobiotechnology. 2023-5-6

[10]
Development of doxorubicin-encapsulated magnetic liposome@PEG for treatment of breast cancer in BALB/c mice.

Drug Deliv Transl Res. 2023-10

本文引用的文献

[1]
Recent Advances in Poly(α--glutamic acid)-Based Nanomaterials for Drug Delivery.

Biomolecules. 2022-4-25

[2]
Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy.

RSC Adv. 2019-8-27

[3]
Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy.

RSC Adv. 2020-10-20

[4]
Poly(amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview.

ACS Appl Bio Mater. 2020-9-21

[5]
Post-synthetic modifications in porous organic polymers for biomedical and related applications.

Chem Soc Rev. 2022-1-4

[6]
Targeted Gold Nanohybrids Functionalized with Folate-Hydrophobic-Quaternized Pullulan Delivering Camptothecin for Enhancing Hydrophobic Anticancer Drug Efficacy.

Polymers (Basel). 2021-8-10

[7]
Loading and release of cancer chemotherapy drugs utilizing simultaneous temperature and pH-responsive nanohybrid.

BMC Pharmacol Toxicol. 2021-7-14

[8]
Recent Developments of Carboxymethyl Cellulose.

Polymers (Basel). 2021-4-20

[9]
Nanotheranostics through Mitochondria-targeted Delivery with Fluorescent Peptidomimetic Nanohybrids for Apoptosis Induction of Brain Cancer Cells.

Nanotheranostics. 2021

[10]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索