文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项整合同步生物标志物和临床特征的预测模型,用于识别耐药性癫痫患儿中对迷走神经刺激有反应的患者。

A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy.

机构信息

Department of Pediatrics, Peking University First Hospital, Beijing, China.

National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.

出版信息

CNS Neurosci Ther. 2022 Nov;28(11):1838-1848. doi: 10.1111/cns.13923. Epub 2022 Jul 27.


DOI:10.1111/cns.13923
PMID:35894770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9532924/
Abstract

AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug-resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase-locking value (PLV), were compared between responders and non-responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non-responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10-fold cross-validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation.

摘要

目的:迷走神经刺激(VNS)是一种用于治疗耐药性癫痫(DRE)儿童的神经调节疗法。VNS 的疗效存在异质性。需要一种预测模型来预测植入前的疗效。

方法:我们收集了接受 VNS 植入并接受至少 1 年定期程控的 DRE 儿童的数据。88 例儿童有术前临床资料和头皮视频脑电图(EEG)。在应答者和无应答者之间比较了同步特征,包括相位滞后指数(PLI)、加权相位滞后指数(wPLI)和锁相值(PLV)。我们进一步采用支持向量机(SVM)分类器从 25 个临床和 18 个同步特征中选择,构建了一个在发现队列(n=70)中用于疗效预测的模型,并在独立验证队列(n=18)中进行了测试。

结果:在发现队列中, responder 组清醒间期高 beta 频段的平均 interictal awake PLI 显著高于 non-responder 组(p<0.05)。将临床和同步特征相结合生成的 SVM 分类器具有最佳的预测效果,在 10 倍交叉验证中准确率为 75.7%,精密度为 80.8%,接收者操作特征曲线(AUC)下面积为 0.766。在验证队列中,预测模型的准确率为 61.1%。

结论:本研究建立了第一个整合临床和基线同步特征的预测模型,用于术前筛选 DRE 儿童的 VNS 应答者。通过进一步优化模型,我们希望为 VNS 植入前识别应答者提供一种有效、便捷的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/08458b075d34/CNS-28-1838-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/c119960c2cde/CNS-28-1838-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/3ab6843d4e3c/CNS-28-1838-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/08458b075d34/CNS-28-1838-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/c119960c2cde/CNS-28-1838-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/3ab6843d4e3c/CNS-28-1838-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a31/9532924/08458b075d34/CNS-28-1838-g004.jpg

相似文献

[1]
A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2022-11

[2]
A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2024-7

[3]
The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization.

Brain Connect. 2020-12

[4]
Brain functional connectivity-based prediction of vagus nerve stimulation efficacy in pediatric pharmacoresistant epilepsy.

CNS Neurosci Ther. 2023-11

[5]
Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study.

PLoS One. 2024

[6]
Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG.

Epilepsy Res. 2015-7

[7]
Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology.

Neuroimage Clin. 2018-6-18

[8]
Somatosensory evoked fields predict response to vagus nerve stimulation.

Neuroimage Clin. 2020

[9]
Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy.

Neurotherapeutics. 2021-10

[10]
An interictal EEG can predict the outcome of vagus nerve stimulation therapy for children with intractable epilepsy.

Childs Nerv Syst. 2017-1

引用本文的文献

[1]
Classification of internet addiction using machine learning on electroencephalography synchronization and functional connectivity.

Psychol Med. 2025-5-16

[2]
Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response.

Epilepsia. 2024-12

[3]
A predictive model combining connectomics and entropy biomarkers to discriminate long-term vagus nerve stimulation efficacy for pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2024-7

[4]
Identifying responders to vagus nerve stimulation based on microstructural features of thalamocortical tracts in drug-resistant epilepsy.

Neurotherapeutics. 2024-9

[5]
Electroencephalogram synchronization measure as a predictive biomarker of Vagus nerve stimulation response in refractory epilepsy: A retrospective study.

PLoS One. 2024

[6]
Characterization of Vagus Nerve Stimulation (VNS) Dose-Dependent Effects on EEG Power Spectrum and Synchronization.

Biomedicines. 2024-3-1

[7]
The absence of one's intimate partner promotes dyadic competition through enhanced interbrain synchronization between opponents.

Front Psychol. 2024-1-24

[8]
Brain functional connectivity-based prediction of vagus nerve stimulation efficacy in pediatric pharmacoresistant epilepsy.

CNS Neurosci Ther. 2023-11

[9]
An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features.

Front Neurosci. 2023-1-12

本文引用的文献

[1]
Norwegian population-based study of long-term effects, safety, and predictors of response of vagus nerve stimulation treatment in drug-resistant epilepsy: The NORPulse study.

Epilepsia. 2022-2

[2]
Vagus Nerve Stimulation Elicits Sleep EEG Desynchronization and Network Changes in Responder Patients in Epilepsy.

Neurotherapeutics. 2021-10

[3]
Applying nonlinear measures to the brain rhythms: an effective method for epilepsy diagnosis.

BMC Med Inform Decis Mak. 2021-9-24

[4]
Data-driven electrophysiological feature based on deep learning to detect epileptic seizures.

J Neural Eng. 2021-9-30

[5]
Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy.

J Neurosurg. 2022-3-1

[6]
An economic evaluation of vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug-resistant epilepsy in England.

J Med Econ. 2021

[7]
Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings.

Epilepsia. 2021-10

[8]
Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction.

IEEE Trans Cybern. 2022-11

[9]
Vagus Nerve Stimulation and Seizure Outcomes in Pediatric Refractory Epilepsy: Systematic Review and Meta-analysis.

Neurology. 2021-5-31

[10]
The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization.

Brain Connect. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索