Department of Pediatrics, Peking University First Hospital, Beijing, China.
National Engineering laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.
CNS Neurosci Ther. 2022 Nov;28(11):1838-1848. doi: 10.1111/cns.13923. Epub 2022 Jul 27.
AIMS: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with drug-resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction model is needed to predict the efficacy before implantation. METHODS: We collected data from children with DRE who underwent VNS implantation and received regular programming for at least 1 year. Preoperative clinical information and scalp video electroencephalography (EEG) were available in 88 children. Synchronization features, including phase lag index (PLI), weighted phase lag index (wPLI), and phase-locking value (PLV), were compared between responders and non-responders. We further adapted a support vector machine (SVM) classifier selected from 25 clinical and 18 synchronization features to build a prediction model for efficacy in a discovery cohort (n = 70) and was tested in an independent validation cohort (n = 18). RESULTS: In the discovery cohort, the average interictal awake PLI in the high beta band was significantly higher in responders than non-responders (p < 0.05). The SVM classifier generated from integrating both clinical and synchronization features had the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% and area under the receiver operating characteristic (AUC) of 0.766 on 10-fold cross-validation. In the validation cohort, the prediction model demonstrated an accuracy of 61.1%. CONCLUSION: This study established the first prediction model integrating clinical and baseline synchronization features for preoperative VNS responder screening among children with DRE. With further optimization of the model, we hope to provide an effective and convenient method for identifying responders before VNS implantation.
目的:迷走神经刺激(VNS)是一种用于治疗耐药性癫痫(DRE)儿童的神经调节疗法。VNS 的疗效存在异质性。需要一种预测模型来预测植入前的疗效。
方法:我们收集了接受 VNS 植入并接受至少 1 年定期程控的 DRE 儿童的数据。88 例儿童有术前临床资料和头皮视频脑电图(EEG)。在应答者和无应答者之间比较了同步特征,包括相位滞后指数(PLI)、加权相位滞后指数(wPLI)和锁相值(PLV)。我们进一步采用支持向量机(SVM)分类器从 25 个临床和 18 个同步特征中选择,构建了一个在发现队列(n=70)中用于疗效预测的模型,并在独立验证队列(n=18)中进行了测试。
结果:在发现队列中, responder 组清醒间期高 beta 频段的平均 interictal awake PLI 显著高于 non-responder 组(p<0.05)。将临床和同步特征相结合生成的 SVM 分类器具有最佳的预测效果,在 10 倍交叉验证中准确率为 75.7%,精密度为 80.8%,接收者操作特征曲线(AUC)下面积为 0.766。在验证队列中,预测模型的准确率为 61.1%。
结论:本研究建立了第一个整合临床和基线同步特征的预测模型,用于术前筛选 DRE 儿童的 VNS 应答者。通过进一步优化模型,我们希望为 VNS 植入前识别应答者提供一种有效、便捷的方法。
Neuroimage Clin. 2018-6-18
Neuroimage Clin. 2020
BMC Med Inform Decis Mak. 2021-9-24