Suppr超能文献

基于脑功能连接的预测儿童药物难治性癫痫迷走神经刺激疗效。

Brain functional connectivity-based prediction of vagus nerve stimulation efficacy in pediatric pharmacoresistant epilepsy.

机构信息

Beijing International Center for Mathematical Research, Peking University, Beijing, China.

Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.

出版信息

CNS Neurosci Ther. 2023 Nov;29(11):3259-3268. doi: 10.1111/cns.14257. Epub 2023 May 11.

Abstract

OBJECTIVE

Although vagus nerve stimulation (VNS) is a common and widely used therapy for pharmacoresistant epilepsy, the reported efficacy of VNS in pediatric patients varies, so it is unclear which children will respond to VNS therapy. This study aimed to identify functional brain network features associated with VNS action to distinguish VNS responders from nonresponders using scalp electroencephalogram (EEG) data.

METHODS

Twenty-three children were included in this study, 16 in the discovery cohort and 7 in the test cohort. Using partial correlation value as a measure of whole-brain functional connectivity, we identified the differential edges between responders and nonresponders. Results derived from this were used as input to generate a support vector machine-learning classifier to predict VNS outcomes.

RESULTS

The postcentral gyrus in the left and right parietal lobe regions was identified as the most significant differential brain region between VNS responders and nonresponders (p < 0.001). The resultant classifier demonstrated a mean AUC value of 0.88, a mean sensitivity rate of 91.4%, and a mean specificity rate of 84.3% on fivefold cross-validation in the discovery cohort. In the testing cohort, our study demonstrated an AUC value of 0.91, a sensitivity rate of 86.6%, and a specificity rate of 79.3%. Furthermore, for prediction accuracy, our model can achieve 81.4% accuracy at the epoch level and 100% accuracy at the patient level.

SIGNIFICANCE

This study provides the first treatment response prediction model for VNS using scalp EEG data with ictal recordings and offers new insights into its mechanism of action. Our results suggest that brain functional connectivity features can help predict therapeutic response to VNS therapy. With further validation, our model could facilitate the selection of targeted pediatric patients and help avoid risky and costly procedures for patients who are unlikely to benefit from VNS therapy.

摘要

目的

尽管迷走神经刺激(VNS)是一种常用于治疗耐药性癫痫的常见且广泛应用的疗法,但 VNS 在儿科患者中的疗效报告存在差异,因此尚不清楚哪些儿童对 VNS 治疗有反应。本研究旨在通过头皮脑电图(EEG)数据,确定与 VNS 作用相关的功能脑网络特征,以区分 VNS 反应者和无反应者。

方法

本研究共纳入 23 名儿童,其中 16 名在发现队列中,7 名在测试队列中。我们使用部分相关值作为全脑功能连接的度量指标,确定了反应者和无反应者之间的差异边缘。从这些结果中得出的结果被用作输入,以生成支持向量机学习分类器来预测 VNS 结果。

结果

发现左、右顶叶后中央回区域是 VNS 反应者和无反应者之间最显著的差异脑区(p<0.001)。在发现队列的五重交叉验证中,所得分类器的平均 AUC 值为 0.88,平均敏感性率为 91.4%,特异性率为 84.3%。在测试队列中,我们的研究显示 AUC 值为 0.91,敏感性率为 86.6%,特异性率为 79.3%。此外,对于预测准确性,我们的模型在脑电记录的发作水平上可以达到 81.4%的准确率,在患者水平上可以达到 100%的准确率。

意义

本研究首次使用头皮 EEG 数据和发作记录,为 VNS 提供了基于治疗反应的预测模型,为其作用机制提供了新的见解。我们的结果表明,脑功能连接特征可以帮助预测 VNS 治疗的反应。进一步验证后,我们的模型可以帮助选择靶向儿科患者,并避免对不太可能从 VNS 治疗中获益的患者进行风险大且成本高的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f4d/10580342/baff5bd45493/CNS-29-3259-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验