Suppr超能文献

基于最小二乘法的手指肌电-力建模正则化的随机通道掩蔽,以提高跨日性能。

Random Channel Masks for Regularization of Least Squares-Based Finger EMG-Force Modeling to Improve Cross-Day Performance.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2157-2167. doi: 10.1109/TNSRE.2022.3194246. Epub 2022 Aug 9.

Abstract

Estimating the finger forces from surface electromyography (sEMG) is essential for diverse applications (e.g., human-machine interfacing). The performance of pre-trained sEMG-force models degenerates significantly when applied on a second day, due to the large cross-day variation of sEMG characteristics. Previous studies mainly employed transfer learning algorithms to tackle this problem. However, transfer learning algorithms normally require data collected on the second day for model calibration, increasing the inconvenience in practical use. In this work, we investigated the effect of model regularization on this issue. Specifically, 256-channel high-density sEMG (HDsEMG) signals with varying finger forces were collected on different days (3-25 days apart). We applied randomly generated channel perturbations ("masks") to feature maps of randomly selected channels in training dataset. The channel masks of the training set were generated randomly and independently in each narrow time window (~20 ms). We assumed that by learning from randomly masked feature maps (randomness is the central aspect), the model would not be biased by a small number of features but would be based on learning from a global perspective, therefore avoiding overfitting to the within-day EMG patterns. Moore-Penrose inverse model regularization was also employed as a baseline method, with results showing that cross-day EMG-force models require a higher tolerance parameter compared with within-day applications. In combination with the Moore-Penrose inverse model regularization, further applying random channel masks to the training set significantly improved model performance in cross-day validation.

摘要

从表面肌电图 (sEMG) 估计手指力对于各种应用(例如人机接口)至关重要。由于 sEMG 特征的跨日变化很大,预训练的 sEMG-力模型在第二天应用时性能会显著下降。以前的研究主要采用迁移学习算法来解决这个问题。然而,迁移学习算法通常需要在第二天收集的数据来进行模型校准,这在实际使用中增加了不便。在这项工作中,我们研究了模型正则化对此问题的影响。具体来说,我们在不同的日子(相隔 3-25 天)采集了具有不同手指力的 256 通道高密度 sEMG (HDsEMG) 信号。我们在训练数据集中随机选择通道的特征图上应用随机生成的通道扰动(“掩码”)。训练集中的通道掩码在每个窄时间窗口(约 20 毫秒)中都是随机且独立生成的。我们假设通过从随机屏蔽的特征图中学习(随机性是核心方面),模型不会受到少数特征的影响,而是基于全局视角进行学习,从而避免过度拟合日内的 EMG 模式。还采用了 Moore-Penrose 逆模型正则化作为基线方法,结果表明跨日 EMG-力模型需要比日内应用更高的容忍参数。与 Moore-Penrose 逆模型正则化相结合,进一步将随机通道掩码应用于训练集可显著提高跨日验证中的模型性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验