Liu Xiaofeng, Xing Fangxu, You Jane, Lu Jun, Kuo C-C Jay, Fakhri Georges El, Woo Jonghye
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2820-2834. doi: 10.1109/TNNLS.2022.3192315. Epub 2024 Feb 5.
Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPNs) further address class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve the performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype while exhibiting disparate characteristics because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multiview congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.
无监督域适应(UDA)已成功应用于将知识从有标签的源域转移到无标签的目标域。最近提出的可转移原型网络(TPN)进一步解决了类条件对齐问题。在TPN中,虽然在潜在空间中明确强制源域和目标域之间类中心的接近度,但潜在的细粒度子类型结构和跨域类内紧凑性尚未得到充分研究。为了解决这个问题,我们提出了一种新方法,以自适应地执行细粒度子类型感知对齐,从而在两个域中都没有子类型标签的情况下提高目标域的性能。我们方法的见解是,一个类中的未标记子类型在一个子类型内具有局部接近性,同时由于不同的条件和标签偏移而表现出不同的特征。具体来说,我们建议通过利用中间伪标签同时强制子类型级紧凑性和类级分离。此外,我们系统地研究了有无子类型数量先验知识的各种情况,并建议利用潜在的子类型结构。此外,还开发了一个动态队列框架,以使用替代处理方案稳定地演化子类型聚类中心。使用多视图先天性心脏病数据以及VisDA和DomainNet进行的实验结果表明,与现有最先进的UDA方法相比,我们的子类型感知UDA是有效且合理的。