Suppr超能文献

用于脑肿瘤磁共振成像中异构结构分割的增量学习

Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.

作者信息

Liu Xiaofeng, Shih Helen A, Xing Fangxu, Santarnecchi Emiliano, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114.

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.

Abstract

Deep learning (DL) models for segmenting various anatomical structures have achieved great success via a static DL model that is trained in a single source domain. Yet, the static DL model is likely to perform poorly in a continually evolving environment, requiring appropriate model updates. In an incremental learning setting, we would expect that well-trained static models are updated, following continually evolving target domain data-e.g., additional lesions or structures of interest-collected from different sites, without catastrophic forgetting. This, however, poses challenges, due to distribution shifts, additional structures not seen during the initial model training, and the absence of training data in a source domain. To address these challenges, in this work, we seek to progressively evolve an "off-the-shelf" trained segmentation model to diverse datasets with additional anatomical categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entropy regularized momentum MixUp decay is developed for adaptive network optimization. We evaluated our framework on a brain tumor segmentation task with continually changing target domains-i.e., new MRI scanners/modalities with incremental structures. Our framework was able to well retain the discriminability of previously learned structures, hence enabling the realistic life-long segmentation model extension along with the widespread accumulation of big medical data.

摘要

用于分割各种解剖结构的深度学习(DL)模型通过在单个源域中训练的静态DL模型取得了巨大成功。然而,静态DL模型在不断变化的环境中可能表现不佳,需要进行适当的模型更新。在增量学习设置中,我们期望经过良好训练的静态模型能够随着不断变化的目标域数据(例如,从不同站点收集的额外病变或感兴趣的结构)进行更新,而不会出现灾难性遗忘。然而,由于分布变化、初始模型训练期间未见过的额外结构以及源域中缺乏训练数据,这带来了挑战。为了应对这些挑战,在这项工作中,我们试图以统一的方式将一个“现成”训练的分割模型逐步演进到具有额外解剖类别的不同数据集。具体而言,我们首先提出了一个具有平衡刚性和可塑性分支的差异感知双流模块,以解耦新旧任务,该模块由连续批量归一化引导。然后,开发了一种具有自熵正则化动量MixUp衰减的互补伪标签训练方案,用于自适应网络优化。我们在一个脑肿瘤分割任务上评估了我们的框架,该任务的目标域不断变化,即具有增量结构的新MRI扫描仪/模态。我们的框架能够很好地保留先前学习结构的可辨别性,从而能够随着大量医学数据的广泛积累,实现现实的终身分割模型扩展。

相似文献

1
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.用于脑肿瘤磁共振成像中异构结构分割的增量学习
Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.
3
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
4
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
5
Extending pretrained segmentation networks with additional anatomical structures.扩展带有附加解剖结构的预训练分割网络。
Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1187-1195. doi: 10.1007/s11548-019-01984-4. Epub 2019 May 2.
7
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation.增量学习与迁移学习相结合:在多站点前列腺MRI分割中的应用
Distrib Collab Fed Learn Afford AI Healthc Resour Div Glob Health (2022). 2022 Sep;13573:3-16. doi: 10.1007/978-3-031-18523-6_1. Epub 2022 Oct 7.

本文引用的文献

1
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation.增量学习与迁移学习相结合:在多站点前列腺MRI分割中的应用
Distrib Collab Fed Learn Afford AI Healthc Resour Div Glob Health (2022). 2022 Sep;13573:3-16. doi: 10.1007/978-3-031-18523-6_1. Epub 2022 Oct 7.
3
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
6
Subtype-Aware Dynamic Unsupervised Domain Adaptation.基于子类型感知的动态无监督域适应
IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):2820-2834. doi: 10.1109/TNNLS.2022.3192315. Epub 2024 Feb 5.
7
Uncertainty-Aware Contrastive Distillation for Incremental Semantic Segmentation.用于增量语义分割的不确定性感知对比蒸馏
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2567-2581. doi: 10.1109/TPAMI.2022.3163806. Epub 2023 Jan 6.
8
Self-Training for Class-Incremental Semantic Segmentation.用于类别增量语义分割的自训练
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9116-9127. doi: 10.1109/TNNLS.2022.3155746. Epub 2023 Oct 27.
9
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验