State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Tumori. 2023 Jun;109(3):282-294. doi: 10.1177/03008916221109334. Epub 2022 Jul 27.
Thymic carcinoma (TC) is a rare malignant tumor that can have a poor prognosis, and accurate prognostication prediction remains difficult. We aimed to develop a nomogram to predict overall survival (OS) and cancer-specific survival (CSS) based on a large cohort of patients.
The Surveillance Epidemiology and End Results (SEER) database was searched to identify TC patients (1975-2016). Univariate and multivariable Cox regression analyses were used to identify predictors of OS and CSS, which were used to construct nomograms. The nomograms were evaluated using the concordance index (C-index), calibration curve, receiver operating characteristic curve, and decision curve analysis (DCA). Subgroup analysis was performed to identify high-risk patients.
The analysis identified six predictors of OS (Masaoka stage, surgical method, lymph node metastasis, liver metastasis, bone metastasis, and radiotherapy) and five predictors of CSS (Masaoka stage, surgical method, lymph node metastasis, tumor size, and brain metastasis), which were used to create nomograms for predicting three-year and five-year OS and CSS. The nomograms had reasonable C-index values (OS: 0.687 [training] and 0.674 [validation], CSS: 0.712 [training] and 0.739 [validation]). The DCA curve revealed that the nomograms were better for predicting OS and CSS, relative to the Masaoka staging system.
We developed nomograms using eight clinicopathological factors that predicted OS and CSS among TC patients. The nomograms performed better than the traditional Masaoka staging system and could identify high-risk patients. Based on the nomograms' performance, we believe they will be useful prognostication tools for TC patients.
胸腺癌(TC)是一种罕见的恶性肿瘤,预后较差,准确的预后预测仍然困难。我们旨在基于大量患者开发一个列线图来预测总生存期(OS)和癌症特异性生存期(CSS)。
从监测、流行病学和最终结果(SEER)数据库中搜索 TC 患者(1975-2016 年)。使用单变量和多变量 Cox 回归分析来确定 OS 和 CSS 的预测因素,这些因素用于构建列线图。使用一致性指数(C 指数)、校准曲线、接收者操作特征曲线和决策曲线分析(DCA)评估列线图。进行亚组分析以确定高危患者。
分析确定了 6 个 OS 的预测因素(Masaoka 分期、手术方法、淋巴结转移、肝转移、骨转移和放疗)和 5 个 CSS 的预测因素(Masaoka 分期、手术方法、淋巴结转移、肿瘤大小和脑转移),这些因素用于创建预测 3 年和 5 年 OS 和 CSS 的列线图。列线图具有合理的 C 指数值(OS:训练集为 0.687,验证集为 0.674;CSS:训练集为 0.712,验证集为 0.739)。DCA 曲线表明,与 Masaoka 分期系统相比,列线图更有利于预测 OS 和 CSS。
我们使用 8 个临床病理因素开发了预测 TC 患者 OS 和 CSS 的列线图。该列线图的表现优于传统的 Masaoka 分期系统,可以识别高危患者。基于列线图的性能,我们认为它们将是 TC 患者有用的预后工具。