Suppr超能文献

AP2/ERF 家族 GmERF113 通过激活 GmbZIP20 正向调控大豆的抗旱性。

The AP2/ERF GmERF113 Positively Regulates the Drought Response by Activating in Soybean.

机构信息

Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China.

Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China.

出版信息

Int J Mol Sci. 2022 Jul 24;23(15):8159. doi: 10.3390/ijms23158159.

Abstract

Ethylene response factors (ERFs) are involved in biotic and abiotic stress; however, the drought resistance mechanisms of many ERFs in soybeans have not been resolved. Previously, we proved that enhances resistance to the pathogen in soybean. Here, we determined that is induced by 20% PEG-6000. Compared to the wild-type plants, soybean plants overexpressing (-OE) displayed increased drought tolerance which was characterized by milder leaf wilting, less water loss from detached leaves, smaller stomatal aperture, lower Malondialdehyde (MDA) content, increased proline accumulation, and higher Superoxide dismutase (SOD) and Peroxidase (POD) activities under drought stress, whereas plants with silenced through RNA interference were the opposite. Chromatin immunoprecipitation and dual effector-reporter assays showed that GmERF113 binds to the GCC-box in the promoter, activating expression directly. Overexpressing improved drought resistance in the composite soybean plants with transgenic hairy roots. RNA-seq analysis revealed that GmERF113 downregulates abscisic acid 8'-hydroxylase 3 (') and upregulates various drought-related genes. Overexpressing and increased the abscisic acid (ABA) content and reduced the expression of ' in transgenic soybean plants and hairy roots, respectively. These results reveal that the GmERF113-GmPR10-1 pathway improves drought resistance and affects the ABA content in soybean, providing a theoretical basis for the molecular breeding of drought-tolerant soybean.

摘要

乙烯应答因子(ERFs)参与生物和非生物胁迫;然而,许多大豆 ERF 的抗旱机制尚未解决。以前,我们证明了 增强了大豆对病原体 的抗性。在这里,我们确定 被 20%PEG-6000 诱导。与野生型植物相比,过量表达 的大豆植株表现出增强的耐旱性,其特征为叶片萎蔫程度较轻、离体叶片水分损失较少、气孔孔径较小、丙二醛(MDA)含量较低、脯氨酸积累增加以及超氧化物歧化酶(SOD)和过氧化物酶(POD)活性较高在干旱胁迫下,而通过 RNA 干扰沉默 的植株则相反。染色质免疫沉淀和双效应子报告基因检测表明,GmERF113 结合到 启动子中的 GCC 盒,直接激活 表达。过量表达 改善了具有转基因毛状根的复合大豆植株的耐旱性。RNA-seq 分析显示,GmERF113 下调脱落酸 8'-羟化酶 3(')并上调各种与干旱相关的基因。过量表达 和 分别增加了转基因大豆植株和毛状根中的脱落酸(ABA)含量并降低了 '的表达。这些结果表明,GmERF113-GmPR10-1 途径提高了大豆的抗旱性并影响了 ABA 含量,为耐旱性大豆的分子育种提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a30/9330420/85ea9ab02d65/ijms-23-08159-g001.jpg

相似文献

1
The AP2/ERF GmERF113 Positively Regulates the Drought Response by Activating in Soybean.
Int J Mol Sci. 2022 Jul 24;23(15):8159. doi: 10.3390/ijms23158159.
2
GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean.
Plant J. 2022 Jul;111(2):473-495. doi: 10.1111/tpj.15809. Epub 2022 Jun 2.
3
A Novel Soybean ERF Transcription Factor, , Increases Resistance to Infection in Soybean.
Front Plant Sci. 2017 Mar 7;8:299. doi: 10.3389/fpls.2017.00299. eCollection 2017.
4
Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor.
Plant Cell Physiol. 2017 Oct 1;58(10):1764-1776. doi: 10.1093/pcp/pcx111.
8
CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean.
Plant Physiol. 2023 Apr 3;191(4):2427-2446. doi: 10.1093/plphys/kiac573.
10
The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling.
Plant Physiol Biochem. 2021 Oct;167:980-989. doi: 10.1016/j.plaphy.2021.09.026. Epub 2021 Sep 24.

引用本文的文献

1
Genome-Wide Identification and Comprehensive Analysis of Gene Family in Under Abiotic Stress.
Life (Basel). 2025 Aug 11;15(8):1269. doi: 10.3390/life15081269.
3
The ERF transcription factor TaERF13-2B functions as a negative regulator of drought tolerance in and wheat.
Front Plant Sci. 2025 Mar 27;16:1535850. doi: 10.3389/fpls.2025.1535850. eCollection 2025.
4
Identification of nuclear factor YA6 genes in sorghum and characterization of their involvement in drought tolerance.
Front Plant Sci. 2025 Mar 19;16:1524066. doi: 10.3389/fpls.2025.1524066. eCollection 2025.
5
A wild-allele GsPP2C-51-a1 enhances tolerance to drought stress in soybean and Arabidopsis.
Theor Appl Genet. 2025 Feb 24;138(3):51. doi: 10.1007/s00122-025-04835-w.
7
Physiological Characteristic Changes and Transcriptome Analysis of Maize () Roots under Drought Stress.
Int J Genomics. 2024 Jan 17;2024:5681174. doi: 10.1155/2024/5681174. eCollection 2024.
9
Transcription Factor Negatively Regulates Salt Stress Tolerance in .
Plants (Basel). 2023 Aug 21;12(16):3007. doi: 10.3390/plants12163007.
10
Transcriptomic and biochemical analyses of drought response mechanism in mung bean (Vignaradiata (L.) Wilczek) leaves.
PLoS One. 2023 May 10;18(5):e0285400. doi: 10.1371/journal.pone.0285400. eCollection 2023.

本文引用的文献

3
A Pathogenesis-Related Protein-Like Gene Is Involved in the Defense Response to the Root Rot Pathogen.
Front Plant Sci. 2021 Jan 13;11:610176. doi: 10.3389/fpls.2020.610176. eCollection 2020.
4
Pathogenesis Related Proteins (PRs): From Cellular Mechanisms to Plant Defense.
Curr Protein Pept Sci. 2021;22(5):396-412. doi: 10.2174/1389203721999201231212736.
6
The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance.
Plant Sci. 2020 Dec;301:110643. doi: 10.1016/j.plantsci.2020.110643. Epub 2020 Aug 28.
7
Transcription factors as key molecular target to strengthen the drought stress tolerance in plants.
Physiol Plant. 2021 Jun;172(2):847-868. doi: 10.1111/ppl.13268. Epub 2020 Nov 22.
8
Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses.
New Phytol. 2021 Mar;229(5):2660-2675. doi: 10.1111/nph.17019. Epub 2020 Nov 23.
10
Drought-induced AtbZIP62 transcription factor regulates drought stress response in Arabidopsis.
Plant Physiol Biochem. 2020 Nov;156:384-395. doi: 10.1016/j.plaphy.2020.09.013. Epub 2020 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验