Suppr超能文献

深度学习小目标检测器的新型可解释验证优化。

Optimisation of Deep Learning Small-Object Detectors with Novel Explainable Verification.

机构信息

School of Engineering, University of Kent, Canterbury CT2 7NT, UK.

School of Computing, University of Kent, Canterbury CT2 7NZ, UK.

出版信息

Sensors (Basel). 2022 Jul 26;22(15):5596. doi: 10.3390/s22155596.

Abstract

In this paper, we present a novel methodology based on machine learning for identifying the most appropriate from a set of available state-of-the-art object detectors for a given application. Our particular interest is to develop a road map for identifying verifiably optimal selections, especially for challenging applications such as detecting small objects in a mixed-size object dataset. State-of-the-art object detection systems often find the localisation of small-size objects challenging since most are usually trained on large-size objects. These contain abundant information as they occupy a large number of pixels relative to the total image size. This fact is normally exploited by the model during training and inference processes. To dissect and understand this process, our approach systematically examines detectors' performances using two very distinct deep convolutional networks. The first is the single-stage YOLO V3 and the second is the double-stage Faster R-CNN. Specifically, our proposed method explores and visually illustrates the impact of feature extraction layers, number of anchor boxes, data augmentation, etc., utilising ideas from the field of explainable Artificial Intelligence (XAI). Our results, for example, show that multi-head YOLO V3 detectors trained using augmented data produce better performance even with a fewer number of anchor boxes. Moreover, robustness regarding the detector's ability to explain how a specific decision was reached is investigated using different explanation techniques. Finally, two new visualisation techniques are proposed, WS-Grad and Concat-Grad, for identifying explanation cues of different detectors. These are applied to specific object detection tasks to illustrate their reliability and transparency with respect to the decision process. It is shown that the proposed techniques can result in high resolution and comprehensive heatmaps of the image areas, significantly affecting detector decisions as compared to the state-of-the-art techniques tested.

摘要

在本文中,我们提出了一种基于机器学习的新方法,用于为给定的应用程序从一组可用的最先进的目标检测算法中识别最合适的算法。我们特别感兴趣的是为可验证的最优选择制定路线图,特别是对于具有挑战性的应用程序,例如在混合大小目标数据集中小物体的检测。最先进的目标检测系统通常发现小物体的定位具有挑战性,因为大多数系统通常是在大物体上进行训练的。由于它们相对于图像的总大小占据了大量的像素,因此这些物体包含了丰富的信息。在训练和推理过程中,模型通常会利用这一事实。为了剖析和理解这个过程,我们的方法使用两种非常不同的深度卷积网络系统地检查了探测器的性能。第一个是单阶段的 YOLO V3,第二个是双阶段的 Faster R-CNN。具体来说,我们提出的方法利用可解释人工智能(XAI)领域的思想探索和可视化地说明了特征提取层、锚框数量、数据增强等的影响。例如,我们的结果表明,使用增强数据训练的多头部 YOLO V3 探测器即使使用较少数量的锚框也能产生更好的性能。此外,还使用不同的解释技术研究了探测器解释特定决策是如何做出的能力的稳健性。最后,提出了两种新的可视化技术,WS-Grad 和 Concat-Grad,用于识别不同探测器的解释线索。将这些技术应用于特定的目标检测任务,以说明它们在决策过程中的可靠性和透明度。结果表明,与测试的最先进技术相比,所提出的技术可以生成图像区域的高分辨率和全面的热图,这对探测器的决策有显著的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb19/9330345/8c747b8800c4/sensors-22-05596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验