Suppr超能文献

基于国家的SARS-CoV-2序列样本可持续突变的首次地理识别:全球自然选择趋势

The First Geographic Identification by Country of Sustainable Mutations of SARS-COV2 Sequence Samples: Worldwide Natural Selection Trends.

作者信息

Mahmanzar Mohammadamin, Houseini Seyed Taleb, Rahimian Karim, Namini Arsham Mikaeili, Gholamzad Amir, Tokhanbigli Samaneh, Sisakht Mahsa Mollapour, Farhadi Amin, Kuehu Donna Lee, Deng Youping

机构信息

Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.

Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran.

出版信息

bioRxiv. 2022 Jul 19:2022.07.18.500565. doi: 10.1101/2022.07.18.500565.

Abstract

The high mutation rates of RNA viruses, coupled with short generation times and large population sizes, allow viruses to evolve rapidly and adapt to the host environment. The rapidity of viral mutation also causes problems in developing successful vaccines and antiviral drugs. With the spread of SARS-CoV-2 worldwide, thousands of mutations have been identified, some of which have relatively high incidences, but their potential impacts on virus characteristics remain unknown. The present study analyzed mutation patterns, SARS-CoV-2 AASs retrieved from the GISAID database containing 10,500,000 samples. Python 3.8.0 programming language was utilized to pre-process FASTA data, align to the reference sequence, and analyze the sequences. Upon completion, all mutations discovered were categorized based on geographical regions and dates. The most stable mutations were found in nsp1(8% S135R), nsp12(99.3% P323L), nsp16 (1.2% R216C), envelope (30.6% T9I), spike (97.6% D614G), and Orf8 (3.5% S24L), and were identified in the United States on April 3, 2020, and England, Gibraltar, and, New Zealand, on January 1, 2020, respectively. The study of mutations is the key to improving understanding of the function of the SARS-CoV-2, and recent information on mutations helps provide strategic planning for the prevention and treatment of this disease. Viral mutation studies could improve the development of vaccines, antiviral drugs, and diagnostic assays designed with high accuracy, specifically useful during pandemics. This knowledge helps to be one step ahead of new emergence variants.

摘要

RNA病毒的高突变率,加上其短世代时间和庞大种群规模,使得病毒能够快速进化并适应宿主环境。病毒突变的快速性也给成功研发疫苗和抗病毒药物带来了问题。随着严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在全球范围内传播,已发现数千种突变,其中一些突变的发生率相对较高,但其对病毒特性的潜在影响仍不明确。本研究分析了从包含1050万个样本的全球共享流感数据倡议组织(GISAID)数据库中检索到的SARS-CoV-2氨基酸替代序列(AAS)的突变模式。利用Python 3.8.0编程语言对FASTA数据进行预处理、与参考序列比对并分析序列。完成后,根据地理区域和日期对发现的所有突变进行分类。最稳定的突变存在于非结构蛋白1(nsp1,8%的S135R)、非结构蛋白12(nsp12,99.3%的P323L)、非结构蛋白16(nsp16,1.2%的R216C)、包膜蛋白(30.6%的T9I)、刺突蛋白(97.6%的D614G)和开放阅读框8(Orf8,3.5%的S24L)中,分别于2020年4月3日在美国以及2020年1月1日在英国直布罗陀和新西兰被发现。对突变的研究是增进对SARS-CoV-2功能理解的关键,而有关突变的最新信息有助于为该疾病的预防和治疗提供战略规划。病毒突变研究可推动高精度疫苗、抗病毒药物和诊断检测方法的研发,在大流行期间尤为有用。这些知识有助于领先于新出现的变异毒株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3be2/9327626/a5c052963087/nihpp-2022.07.18.500565v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验