Turi Zsolt, Hananeia Nicholas, Shirinpour Sina, Opitz Alexander, Jedlicka Peter, Vlachos Andreas
Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.
Faculty of Medicine, Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany.
Front Neurosci. 2022 Jul 8;16:929814. doi: 10.3389/fnins.2022.929814. eCollection 2022.
Transcranial magnetic stimulation (TMS) can depolarize cortical neurons through the intact skin and skull. The characteristics of the induced electric field (E-field) have a major impact on specific outcomes of TMS. Using multi-scale computational modeling, we explored whether the stimulation parameters derived from the primary motor cortex (M1) induce comparable macroscopic E-field strengths and subcellular/cellular responses in the dorsolateral prefrontal cortex (DLPFC). To this aim, we calculated the TMS-induced E-field in 16 anatomically realistic head models and simulated the changes in membrane voltage and intracellular calcium levels of morphologically and biophysically realistic human pyramidal cells in the M1 and DLPFC. We found that the conventional intensity selection methods (i.e., motor threshold and fixed intensities) produce variable macroscopic E-fields. Consequently, it was challenging to produce comparable subcellular/cellular responses across cortical regions with distinct folding characteristics. Prospectively, personalized stimulation intensity selection could standardize the E-fields and the subcellular/cellular responses to repetitive TMS across cortical regions and individuals. The suggested computational approach points to the shortcomings of the conventional intensity selection methods used in clinical settings. We propose that multi-scale modeling has the potential to overcome some of these limitations and broaden our understanding of the neuronal mechanisms for TMS.
经颅磁刺激(TMS)可通过完整的皮肤和颅骨使皮质神经元去极化。感应电场(E场)的特性对TMS的特定结果有重大影响。利用多尺度计算模型,我们探究了源自初级运动皮层(M1)的刺激参数是否会在背外侧前额叶皮层(DLPFC)中诱导出相当的宏观E场强度以及亚细胞/细胞反应。为此,我们在16个解剖学逼真的头部模型中计算了TMS诱导的E场,并模拟了M1和DLPFC中形态学和生物物理学逼真的人类锥体细胞的膜电压和细胞内钙水平变化。我们发现,传统的强度选择方法(即运动阈值和固定强度)会产生可变的宏观E场。因此,要在具有不同折叠特征的皮质区域产生相当的亚细胞/细胞反应具有挑战性。前瞻性地看,个性化刺激强度选择可以使跨皮质区域和个体的E场以及对重复TMS的亚细胞/细胞反应标准化。所建议的计算方法指出了临床环境中使用的传统强度选择方法的缺点。我们提出,多尺度建模有潜力克服其中一些局限性,并拓宽我们对TMS神经元机制的理解。