Suppr超能文献

基于混合纹理特征的皮肤癌分类机器视觉方法

A Machine Vision Approach for Classification of Skin Cancer Using Hybrid Texture Features.

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Department of Informatics, University of Leicester, Leicester, UK.

出版信息

Comput Intell Neurosci. 2022 Jul 18;2022:4942637. doi: 10.1155/2022/4942637. eCollection 2022.

Abstract

The main purpose of this study is to observe the importance of machine vision (MV) approach for the identification of five types of skin cancers, namely, actinic-keratosis, benign, solar-lentigo, malignant, and nevus. The 1000 (200 × 5) benchmark image datasets of skin cancers are collected from the International Skin Imaging Collaboration (ISIC). The acquired ISIC image datasets were transformed into texture feature dataset that was a combination of first-order histogram and gray level co-occurrence matrix (GLCM) features. For the skin cancer image, a total of 137,400 (229 × 3 x 200) texture features were acquired on three nonover-lapping regions of interest (ROIs). Principal component analysis (PCA) clustering approach was employed for reducing the dimension of feature dataset. Each image acquired twenty most discriminate features based on two different approaches of statistical features such as average correlation coefficient plus probability of error (ACC + POE) and Fisher (Fis). Furthermore, a correlation-based feature selection (CFS) approach was employed for feature reduction, and optimized 12 features were acquired. Furthermore, a classification algorithm naive bayes (NB), Bayes Net (BN), LMT Tree, and multilayer perception (MLP) using 10 K-fold cross-validation approach were employed on optimized feature datasets and the overall accuracy achieved by MLP is 97.1333%.

摘要

本研究的主要目的是观察机器视觉 (MV) 方法在识别五种皮肤癌(光化性角化病、良性、日光性雀斑、恶性和痣)中的重要性。从国际皮肤成像协作组织 (ISIC) 收集了 1000 个(200×5)皮肤癌基准图像数据集。获得的 ISIC 图像数据集被转换为纹理特征数据集,该数据集由一阶直方图和灰度共生矩阵 (GLCM) 特征组成。对于皮肤癌图像,在三个非重叠感兴趣区域 (ROI) 上总共获取了 137400 个(229×3×200)纹理特征。采用主成分分析 (PCA) 聚类方法来降低特征数据集的维度。每个图像基于平均相关系数加误差概率 (ACC+POE) 和 Fisher (Fis) 两种不同的统计特征方法获取二十个最具判别力的特征。此外,采用基于相关性的特征选择 (CFS) 方法进行特征降维,获取优化后的 12 个特征。此外,使用 10 折交叉验证方法在优化的特征数据集上分别采用朴素贝叶斯 (NB)、贝叶斯网络 (BN)、LMT 树和多层感知机 (MLP) 分类算法,MLP 的总体准确率达到 97.1333%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c92/9313960/0e26c57dd742/CIN2022-4942637.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验