Suppr超能文献

利用全基因组关联分析方法对六倍体小麦(L.)粒铁浓度的遗传剖析。

Genetic dissection of grain iron concentration in hexaploid wheat ( L.) using a genome-wide association analysis method.

机构信息

College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan Province, CHINA.

Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA.

出版信息

PeerJ. 2022 Jul 22;10:e13625. doi: 10.7717/peerj.13625. eCollection 2022.

Abstract

Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in staple food result in micronutrient malnutrition. Wheat ( L.) is the most important global food crop and thus has become an important source of iron for people. Breeding nutritious wheat with high grain-Fe content has become an effective means of alleviating malnutrition. Understanding the genetic basis of micronutrient concentration in wheat grains may provide useful information for breeding for high Fe varieties through marker-assisted selection (MAS). Hence, in the present study, genome-wide association studies (GWAS) were conducted for grain Fe. An association panel of 207 accessions was genotyped using a 660K SNP array and phenotyped for grain Fe content at three locations. The genotypic and phenotypic data obtained thus were used for GWAS. A total of 911 SNPs were significantly associated with grain Fe concentrations. These SNPs were distributed on all 21 wheat chromosomes, and each SNP explained 5.79-25.31% of the phenotypic variations. Notably, the two significant SNPs (AX-108912427 and AX-94729264) not only have a more significant effect on grain Fe concentration but also have the reliability under the different environments. Furthermore, candidate genes potentially associated with grain Fe concentration were predicted, and 10 candidate genes were identified. These candidate genes were related to transport, translocation, remobilization, and accumulationof ironin wheat plants. These findings will not only help in better understanding the molecular basis of Fe accumulation in grains, but also provide elite wheat germplasms to develop Fe-rich wheat varieties through breeding.

摘要

铁(Fe)是人体必需的微量元素。主食中生物可利用的铁浓度低会导致微量营养素营养不良。小麦(L.)是最重要的全球粮食作物,因此已成为人们铁的重要来源。培育富含谷物铁的营养小麦已成为缓解营养不良的有效手段。了解小麦籽粒中微量元素浓度的遗传基础,可能为通过标记辅助选择(MAS)培育高 Fe 品种提供有用信息。因此,本研究对籽粒 Fe 进行了全基因组关联研究(GWAS)。使用 660K SNP 阵列对 207 个品系进行了基因分型,并在三个地点对籽粒 Fe 含量进行了表型测定。由此获得的基因型和表型数据用于 GWAS。共鉴定到 911 个与籽粒 Fe 浓度显著相关的 SNP。这些 SNP 分布在小麦的 21 条染色体上,每个 SNP 解释了 5.79-25.31%的表型变异。值得注意的是,两个显著 SNP(AX-108912427 和 AX-94729264)不仅对籽粒 Fe 浓度有更显著的影响,而且在不同环境下也具有可靠性。此外,预测了与籽粒 Fe 浓度相关的潜在候选基因,并鉴定了 10 个候选基因。这些候选基因与小麦植株中铁的转运、易位、再利用和积累有关。这些发现不仅有助于更好地理解谷物中 Fe 积累的分子基础,而且还为通过育种开发富铁小麦品种提供了优良的小麦种质资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dc5/9310890/1d8c51ae796b/peerj-10-13625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验