Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
MIT-IBM Watson AI Lab, 75 Binney St., Cambridge, MA 02142, USA.
Science. 2022 Jul 29;377(6605):539-543. doi: 10.1126/science.abp8064. Epub 2022 Jul 28.
Nanoscale ionic programmable resistors for analog deep learning are 1000 times smaller than biological cells, but it is not yet clear how much faster they can be relative to neurons and synapses. Scaling analyses of ionic transport and charge-transfer reaction rates point to operation in the nonlinear regime, where extreme electric fields are present within the solid electrolyte and its interfaces. In this work, we generated silicon-compatible nanoscale protonic programmable resistors with highly desirable characteristics under extreme electric fields. This operation regime enabled controlled shuttling and intercalation of protons in nanoseconds at room temperature in an energy-efficient manner. The devices showed symmetric, linear, and reversible modulation characteristics with many conductance states covering a 20× dynamic range. Thus, the space-time-energy performance of the all-solid-state artificial synapses can greatly exceed that of their biological counterparts.
用于模拟深度学习的纳米级离子可编程电阻比生物细胞小 1000 倍,但目前尚不清楚它们相对于神经元和突触的速度能快多少。离子输运和电荷转移反应速率的缩放分析表明,它们可以在非线性区域工作,在该区域中,固体电解质及其界面内存在极端电场。在这项工作中,我们在极端电场下生成了与硅兼容的纳米级质子可编程电阻器,其具有理想的特性。这种工作模式使得在室温下以节能的方式在纳秒级内对质子进行可控穿梭和嵌入。这些器件表现出对称、线性和可逆的调制特性,具有许多电导状态,涵盖了 20 倍的动态范围。因此,全固态人工突触的时空能效可以大大超过其生物对应物。