Suppr超能文献

氧梯度决定了 3D 脑微血管模型中的血管生成,但不决定血脑屏障生成。

Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model.

机构信息

Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA.

出版信息

J Cell Physiol. 2022 Oct;237(10):3872-3882. doi: 10.1002/jcp.30840. Epub 2022 Jul 28.

Abstract

A variety of biophysical properties are known to regulate angiogenic sprouting, and in vitro systems can parse the individual effects of these factors in a controlled setting. Here, a three-dimensional brain microvascular model interrogates how variables including extracellular matrix composition, fluid shear stress, and radius of curvature affect angiogenic sprouting of cerebral endothelial cells. Tracking endothelial migration over several days reveals that application of fluid shear stress and enlarged vessel radius of curvature both attenuate sprouting. Computational modeling informed by oxygen consumption assays suggests that sprouting correlates to reduced oxygen concentration: both fluid shear stress and vessel geometry alter the local oxygen levels dictated by both ambient conditions and cellular respiration. Moreover, increasing cell density and consequently lowering the local oxygen levels yields significantly more sprouting. Further analysis reveals that the magnitude of oxygen concentration is not as important as its spatial concentration gradient: decreasing ambient oxygen concentration causes significantly less sprouting than applying an external oxygen gradient to the vessels. In contrast, barriergenesis is dictated by shear stress independent of local oxygen concentrations, suggesting that different mechanisms mediate angiogenesis and barrier formation and that angiogenic sprouting can occur without compromising the barrier. Overall, these results improve our understanding of how specific biophysical variables regulate the function and activation of cerebral vasculature, and identify spatial oxygen gradients as the driving factor of angiogenesis in the brain.

摘要

多种生物物理特性被认为可以调节血管生成发芽,而体外系统可以在受控环境中解析这些因素的单独影响。在这里,一个三维大脑微血管模型探究了包括细胞外基质组成、流体切应力和曲率半径在内的变量如何影响大脑内皮细胞的血管生成发芽。追踪内皮细胞迁移几天的结果表明,施加流体切应力和增大血管曲率半径都会抑制发芽。由耗氧量测定法提供信息的计算模型表明,发芽与降低氧浓度相关:流体切应力和血管几何形状都会改变由环境条件和细胞呼吸决定的局部氧水平。此外,增加细胞密度,从而降低局部氧水平,会导致明显更多的发芽。进一步的分析表明,氧浓度的大小不如其空间浓度梯度重要:与施加外部氧梯度相比,降低环境氧浓度会导致明显较少的发芽。相比之下,屏障形成取决于与局部氧浓度无关的切应力,这表明不同的机制介导血管生成和屏障形成,并且血管生成发芽可以在不损害屏障的情况下发生。总的来说,这些结果提高了我们对特定生物物理变量如何调节大脑血管功能和激活的理解,并确定空间氧梯度是大脑中血管生成的驱动因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验