Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI, 48109 USA.
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA.
Lab Chip. 2020 Mar 17;20(6):1153-1166. doi: 10.1039/c9lc01170f.
Angiogenesis is a complex morphogenetic process that involves intimate interactions between multicellular endothelial structures and their extracellular milieu. In vitro models of angiogenesis can aid in reducing the complexity of the in vivo microenvironment and provide mechanistic insight into how soluble and physical extracellular matrix cues regulate this process. To investigate how microenvironmental cues regulate angiogenesis and the function of resulting microvasculature, we multiplexed an established angiogenesis-on-a-chip platform that affords higher throughput investigation of 3D endothelial cell sprouting emanating from a parent vessel through defined biochemical gradients and extracellular matrix. We found that two fundamental endothelial cell functions, migration and proliferation, dictate endothelial cell invasion as single cells vs. multicellular sprouts. Microenvironmental cues that elicit excessive migration speed incommensurate with proliferation resulted in microvasculature with poor barrier function and an inability to transport fluid across the microvascular bed. Restoring the balance between migration speed and proliferation rate rescued multicellular sprout invasion, providing a new framework for the design of pro-angiogenic biomaterials that guide functional microvasculature formation for regenerative therapies.
血管生成是一个复杂的形态发生过程,涉及多细胞内皮结构与其细胞外环境之间的密切相互作用。血管生成的体外模型可以帮助降低体内微环境的复杂性,并提供关于可溶性和物理细胞外基质线索如何调节这一过程的机制见解。为了研究微环境线索如何调节血管生成和由此产生的微血管功能,我们对一种已建立的血管生成芯片平台进行了多重分析,该平台可通过定义的生化梯度和细胞外基质对源自母血管的 3D 内皮细胞发芽进行更高通量的研究。我们发现,两种基本的内皮细胞功能,即迁移和增殖,决定了内皮细胞作为单细胞与多细胞芽的侵袭。引发迁移速度与增殖率不成比例的过度迁移的微环境线索会导致微血管屏障功能差,无法将液体输送穿过微血管床。恢复迁移速度和增殖率之间的平衡可以挽救多细胞芽的侵袭,为指导功能性微血管形成的促血管生成生物材料的设计提供了一个新框架,以用于再生疗法。