Suppr超能文献

从头估计和冷冻电子显微镜图像去噪。

Ab-initio contrast estimation and denoising of cryo-EM images.

机构信息

Program in Applied and Computational Mathematics, Princeton University, United States.

Program in Applied and Computational Mathematics, Princeton University, United States; Department of Mathematics, Princeton University, United States.

出版信息

Comput Methods Programs Biomed. 2022 Sep;224:107018. doi: 10.1016/j.cmpb.2022.107018. Epub 2022 Jul 15.

Abstract

BACKGROUND AND OBJECTIVE

The contrast of cryo-EM images varies from one to another, primarily due to the uneven thickness of the ice layer. This contrast variation can affect the quality of 2-D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast estimation is currently performed during 3-D iterative refinement. As a result, the estimates are not available at the earlier computational stages of class averaging and ab-initio modeling. This paper aims to solve the contrast estimation problem directly from the picked particle images in the ab-initio stage, without estimating the 3-D volume, image rotations, or class averages.

METHODS

The key observation underlying our analysis is that the 2-D covariance matrix of the raw images is related to the covariance of the underlying clean images, the noise variance, and the contrast variability between images. We show that the contrast variability can be derived from the 2-D covariance matrix and we apply the existing Covariance Wiener Filtering (CWF) framework to estimate it. We also demonstrate a modification of CWF to estimate the contrast of individual images.

RESULTS

Our method improves the contrast estimation by a large margin, compared to the previous CWF method. Its estimation accuracy is often comparable to that of an oracle that knows the ground truth covariance of the clean images. The more accurate contrast estimation also improves the quality of image restoration as demonstrated in both synthetic and experimental datasets.

CONCLUSIONS

This paper proposes an effective method for contrast estimation directly from noisy images without using any 3-D volume information. It enables contrast correction in the earlier stage of single particle analysis, and may improve the accuracy of downstream processing.

摘要

背景与目的

由于冰层厚度不均匀,冷冻电镜(cryo-EM)图像的对比度存在差异。这种对比度变化会影响二维(2D)类平均、三维(3D)从头建模和 3D 异质性分析的质量。对比度估计目前是在 3D 迭代细化过程中进行的。因此,在 2D 类平均和从头建模的早期计算阶段,无法获得这些估计值。本文旨在直接从从头开始阶段挑选的粒子图像中解决对比度估计问题,而无需估计 3D 体积、图像旋转或类平均。

方法

我们分析的主要观察结果是,原始图像的 2D 协方差矩阵与潜在干净图像的协方差、噪声方差以及图像之间的对比度变化有关。我们表明,可以从 2D 协方差矩阵中推导出对比度变化,并应用现有的协方差维纳滤波(CWF)框架来估计它。我们还展示了对 CWF 的修改,以估计单个图像的对比度。

结果

与之前的 CWF 方法相比,我们的方法大大提高了对比度估计的准确性。其估计精度通常与已知干净图像协方差的 oracle 相当。更准确的对比度估计也提高了图像恢复的质量,这在合成和实验数据集上都得到了证明。

结论

本文提出了一种从噪声图像中直接进行对比度估计的有效方法,而无需使用任何 3D 体积信息。它可以在单颗粒分析的早期阶段进行对比度校正,从而提高下游处理的准确性。

相似文献

1
Ab-initio contrast estimation and denoising of cryo-EM images.从头估计和冷冻电子显微镜图像去噪。
Comput Methods Programs Biomed. 2022 Sep;224:107018. doi: 10.1016/j.cmpb.2022.107018. Epub 2022 Jul 15.
2
Denoising and covariance estimation of single particle cryo-EM images.单颗粒冷冻电镜图像的去噪与协方差估计
J Struct Biol. 2016 Jul;195(1):72-81. doi: 10.1016/j.jsb.2016.04.013. Epub 2016 Apr 27.
7
[Progress in filters for denoising cryo-electron microscopy images].[用于冷冻电子显微镜图像去噪的滤波器研究进展]
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.

本文引用的文献

2
Computational Methods for Single-Particle Electron Cryomicroscopy.单颗粒电子冷冻显微镜的计算方法。
Annu Rev Biomed Data Sci. 2020 Jul;3:163-190. doi: 10.1146/annurev-biodatasci-021020-093826. Epub 2020 May 4.
7
Reducing bias and variance for CTF estimation in single particle cryo-EM.减少单颗粒冷冻电镜中CTF估计的偏差和方差。
Ultramicroscopy. 2020 May;212:112950. doi: 10.1016/j.ultramic.2020.112950. Epub 2020 Jan 29.
10
MAHALANOBIS DISTANCE FOR CLASS AVERAGING OF CRYO-EM IMAGES.用于冷冻电镜图像类别平均的马氏距离
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:654-658. doi: 10.1109/ISBI.2017.7950605. Epub 2017 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验