Program in Applied and Computational Mathematics, Princeton University, United States.
Program in Applied and Computational Mathematics, Princeton University, United States; Department of Mathematics, Princeton University, United States.
Comput Methods Programs Biomed. 2022 Sep;224:107018. doi: 10.1016/j.cmpb.2022.107018. Epub 2022 Jul 15.
The contrast of cryo-EM images varies from one to another, primarily due to the uneven thickness of the ice layer. This contrast variation can affect the quality of 2-D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast estimation is currently performed during 3-D iterative refinement. As a result, the estimates are not available at the earlier computational stages of class averaging and ab-initio modeling. This paper aims to solve the contrast estimation problem directly from the picked particle images in the ab-initio stage, without estimating the 3-D volume, image rotations, or class averages.
The key observation underlying our analysis is that the 2-D covariance matrix of the raw images is related to the covariance of the underlying clean images, the noise variance, and the contrast variability between images. We show that the contrast variability can be derived from the 2-D covariance matrix and we apply the existing Covariance Wiener Filtering (CWF) framework to estimate it. We also demonstrate a modification of CWF to estimate the contrast of individual images.
Our method improves the contrast estimation by a large margin, compared to the previous CWF method. Its estimation accuracy is often comparable to that of an oracle that knows the ground truth covariance of the clean images. The more accurate contrast estimation also improves the quality of image restoration as demonstrated in both synthetic and experimental datasets.
This paper proposes an effective method for contrast estimation directly from noisy images without using any 3-D volume information. It enables contrast correction in the earlier stage of single particle analysis, and may improve the accuracy of downstream processing.
由于冰层厚度不均匀,冷冻电镜(cryo-EM)图像的对比度存在差异。这种对比度变化会影响二维(2D)类平均、三维(3D)从头建模和 3D 异质性分析的质量。对比度估计目前是在 3D 迭代细化过程中进行的。因此,在 2D 类平均和从头建模的早期计算阶段,无法获得这些估计值。本文旨在直接从从头开始阶段挑选的粒子图像中解决对比度估计问题,而无需估计 3D 体积、图像旋转或类平均。
我们分析的主要观察结果是,原始图像的 2D 协方差矩阵与潜在干净图像的协方差、噪声方差以及图像之间的对比度变化有关。我们表明,可以从 2D 协方差矩阵中推导出对比度变化,并应用现有的协方差维纳滤波(CWF)框架来估计它。我们还展示了对 CWF 的修改,以估计单个图像的对比度。
与之前的 CWF 方法相比,我们的方法大大提高了对比度估计的准确性。其估计精度通常与已知干净图像协方差的 oracle 相当。更准确的对比度估计也提高了图像恢复的质量,这在合成和实验数据集上都得到了证明。
本文提出了一种从噪声图像中直接进行对比度估计的有效方法,而无需使用任何 3D 体积信息。它可以在单颗粒分析的早期阶段进行对比度校正,从而提高下游处理的准确性。