Marshall Nicholas F, Mickelin Oscar, Shi Yunpeng, Singer Amit
Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, USA.
Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
Biol Imaging. 2023;3. doi: 10.1017/s2633903x23000028. Epub 2023 Feb 3.
Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For images of size × , our method has time complexity ( + ) and space complexity ( + ). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.
主成分分析(PCA)在冷冻电子显微镜(cryo-EM)图像分析中发挥着重要作用,可用于分类、去噪、压缩和从头建模等各种任务。我们介绍了一种快速方法,用于估计受径向点扩散函数影响的噪声冷冻电子显微镜投影图像的二维协方差矩阵的压缩表示,从而实现快速PCA计算。我们的方法基于一种新算法,该算法在傅里叶-贝塞尔基(圆盘上的谐波)中扩展图像,为处理对比度传递函数的影响提供了一种便捷方式。对于大小为×的图像,我们的方法具有时间复杂度(+)和空间复杂度(+)。与之前的工作相比,这些复杂度与图像不同对比度传递函数的数量无关。我们在合成数据和实验数据上展示了我们的方法,并显示出加速倍数高达两个数量级。