Suppr超能文献

主动脉尺寸的空间差异遗传决定因素影响动脉瘤和狭窄的风险。

Spatially Distinct Genetic Determinants of Aortic Dimensions Influence Risks of Aneurysm and Stenosis.

机构信息

Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA. Electronic address: https://twitter.com/MahanNekoui.

Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA; Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA. Electronic address: https://twitter.com/jpirruccello.

出版信息

J Am Coll Cardiol. 2022 Aug 2;80(5):486-497. doi: 10.1016/j.jacc.2022.05.024.

Abstract

BACKGROUND

The left ventricular outflow tract (LVOT) and ascending aorta are spatially complex, with distinct pathologies and embryologic origins. Prior work examined the genetics of thoracic aortic diameter in a single plane.

OBJECTIVES

We sought to elucidate the genetic basis for the diameter of the LVOT, aortic root, and ascending aorta.

METHODS

Using deep learning, we analyzed 2.3 million cardiac magnetic resonance images from 43,317 UK Biobank participants. We computed the diameters of the LVOT, the aortic root, and at 6 locations of ascending aorta. For each diameter, we conducted a genome-wide association study and generated a polygenic score. Finally, we investigated associations between these scores and disease incidence.

RESULTS

A total of 79 loci were significantly associated with at least 1 diameter. Of these, 35 were novel, and most were associated with 1 or 2 diameters. A polygenic score of aortic diameter approximately 13 mm from the sinotubular junction most strongly predicted thoracic aortic aneurysm (n = 427,016; mean HR: 1.42 per SD; 95% CI: 1.34-1.50; P = 6.67 × 10). A polygenic score predicting a smaller aortic root was predictive of aortic stenosis (n = 426,502; mean HR: 1.08 per SD; 95% CI: 1.03-1.12; P = 5 × 10).

CONCLUSIONS

We detected distinct genetic loci underpinning the diameters of the LVOT, aortic root, and at several segments of ascending aorta. We spatially defined a region of aorta whose genetics may be most relevant to predicting thoracic aortic aneurysm. We further described a genetic signature that may predispose to aortic stenosis. Understanding genetic contributions to proximal aortic diameter may enable identification of individuals at risk for aortic disease and facilitate prioritization of therapeutic targets.

摘要

背景

左心室流出道(LVOT)和升主动脉在空间上较为复杂,具有不同的病理学和胚胎起源。先前的研究仅在单一平面上研究了胸主动脉直径的遗传学。

目的

我们旨在阐明 LVOT、主动脉根部和升主动脉直径的遗传基础。

方法

使用深度学习,我们分析了来自 43317 名英国生物库参与者的 230 万张心脏磁共振图像。我们计算了 LVOT、主动脉根部和升主动脉 6 个部位的直径。对于每个直径,我们进行了全基因组关联研究并生成了多基因评分。最后,我们研究了这些评分与疾病发生率之间的关联。

结果

共有 79 个位点与至少 1 个直径显著相关。其中 35 个是新发现的,大多数与 1 个或 2 个直径相关。主动脉窦管交界处附近直径约为 13mm 的主动脉直径多基因评分最能预测胸主动脉瘤(n=427016;平均 HR:每标准差 1.42;95%CI:1.34-1.50;P=6.67×10)。预测主动脉根部较小的多基因评分可预测主动脉瓣狭窄(n=426502;平均 HR:每标准差 1.08;95%CI:1.03-1.12;P=5×10)。

结论

我们检测到 LVOT、主动脉根部和升主动脉几个节段直径的独特遗传位点。我们从空间上定义了一个主动脉区域,其遗传学可能与预测胸主动脉瘤最相关。我们进一步描述了一个可能导致主动脉瓣狭窄的遗传特征。了解近端主动脉直径的遗传贡献可能使我们能够识别患有主动脉疾病的个体,并有助于确定治疗靶点的优先级。

相似文献

3
Polygenic Scoring for Detection of Ascending Thoracic Aortic Dilation.多基因风险评分检测升主动脉扩张。
Circ Genom Precis Med. 2024 Oct;17(5):e004512. doi: 10.1161/CIRCGEN.123.004512. Epub 2024 Sep 26.
6
Deep learning enables genetic analysis of the human thoracic aorta.深度学习可用于人类胸主动脉的基因分析。
Nat Genet. 2022 Jan;54(1):40-51. doi: 10.1038/s41588-021-00962-4. Epub 2021 Nov 26.

引用本文的文献

5
Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease.利用基因组学鉴定主动脉疾病的新治疗靶点。
Arterioscler Thromb Vasc Biol. 2024 Feb;44(2):334-351. doi: 10.1161/ATVBAHA.123.318771. Epub 2023 Dec 14.
8
A machine learning approach for predicting descending thoracic aortic diameter.一种预测胸降主动脉直径的机器学习方法。
Front Cardiovasc Med. 2023 Feb 13;10:1097116. doi: 10.3389/fcvm.2023.1097116. eCollection 2023.
10
Genetics and mechanisms of thoracic aortic disease.胸主动脉疾病的遗传学与发病机制
Nat Rev Cardiol. 2023 Mar;20(3):168-180. doi: 10.1038/s41569-022-00763-0. Epub 2022 Sep 21.

本文引用的文献

2
Deep learning enables genetic analysis of the human thoracic aorta.深度学习可用于人类胸主动脉的基因分析。
Nat Genet. 2022 Jan;54(1):40-51. doi: 10.1038/s41588-021-00962-4. Epub 2021 Nov 26.
7
The Genetic Makeup of the Electrocardiogram.心电图的基因构成。
Cell Syst. 2020 Sep 23;11(3):229-238.e5. doi: 10.1016/j.cels.2020.08.005. Epub 2020 Sep 10.
9
Genetic and functional insights into the fractal structure of the heart.对心脏分形结构的遗传和功能见解。
Nature. 2020 Aug;584(7822):589-594. doi: 10.1038/s41586-020-2635-8. Epub 2020 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验