文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宏基因组下一代测序检测肺活检组织中结核分枝杆菌复合体的性能。

The performance of detecting Mycobacterium tuberculosis complex in lung biopsy tissue by metagenomic next-generation sequencing.

机构信息

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei, 230001, Anhui, China.

Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.

出版信息

BMC Pulm Med. 2022 Jul 28;22(1):288. doi: 10.1186/s12890-022-02079-8.


DOI:10.1186/s12890-022-02079-8
PMID:35902819
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9330940/
Abstract

BACKGROUND: Tuberculosis (TB) is a chronic infectious disease caused by the Mycobacterium tuberculosis complex (MTBC), which is the leading cause of death from infectious diseases. The rapid and accurate microbiological detection of the MTBC is crucial for the diagnosis and treatment of TB. Metagenomic next-generation sequencing (mNGS) has been shown to be a promising and satisfying application of detection in infectious diseases. However, relevant research about the difference in MTBC detection by mNGS between bronchoalveolar lavage fluid (BALF) and lung biopsy tissue specimens remains scarce. METHODS: We used mNGS to detect pathogens in BALF and lung biopsy tissue obtained by CT-guide percutaneous lung puncture (CPLP) or radial endobronchial ultrasound transbronchial lung biopsy (R-EBUS-TBLB) from 443 hospitalized patients in mainland China suspected of pulmonary infections between May 1, 2019 and October 31, 2021. Aim to evaluate the diagnostic performance of mNGS for detecting MTBC and explore differences in the microbial composition in the 2 specimen types. RESULTS: Among the 443 patients, 46 patients finally were diagnosed with TB, of which 36 patients were detected as MTBC positive by mNGS (8.93%). Striking differences were noticed in the higher detection efficiency of lung biopsy tissue compared with BALF (P = 0.004). There were no significant differences between the 2 specimen types in the relative abundance among the 27 pathogens detected by mNGS from the 36 patients. CONCLUSIONS: This study demonstrates that mNGS could offer an effective detection method of MTBC in BALF or lung tissue biopsy samples in patients suspected of TB infections. When it comes to the situations that BALF samples have limited value to catch pathogens for special lesion sites or the patients have contraindications to bronchoalveolar lavage (BAL) procedures, lung biopsy tissue is an optional specimen for MTBC detection by mNGS. However, whether lung tissue-mNGS is superior to BALF-mNGS in patients with MTBC infection requires further prospective multicenter randomized controlled studies with more cases.

摘要

背景:结核病(TB)是由结核分枝杆菌复合群(MTBC)引起的慢性传染病,是传染病死亡的主要原因。MTBC 的快速准确微生物检测对于 TB 的诊断和治疗至关重要。宏基因组下一代测序(mNGS)已被证明是一种有前途和令人满意的传染病检测应用。然而,关于 mNGS 在支气管肺泡灌洗液(BALF)和经 CT 引导经皮肺穿刺(CPLP)或径向支气管内超声经支气管肺活检(R-EBUS-TBLB)获得的肺活检组织标本中检测 MTBC 的差异的相关研究仍然很少。

方法:我们使用 mNGS 检测 2019 年 5 月 1 日至 2021 年 10 月 31 日期间中国大陆 443 例疑似肺部感染住院患者的 BALF 和经 CT 引导经皮肺穿刺(CPLP)或经径向支气管内超声经支气管肺活检(R-EBUS-TBLB)获得的肺活检组织中的病原体。旨在评估 mNGS 检测 MTBC 的诊断性能,并探讨 2 种标本类型中微生物组成的差异。

结果:在 443 名患者中,最终有 46 名患者被诊断为结核病,其中 36 名患者的 mNGS 检测结果为 MTBC 阳性(8.93%)。肺活检组织的检测效率明显高于 BALF(P=0.004)。在 mNGS 从 36 名患者检测到的 27 种病原体中,2 种标本类型之间的相对丰度没有显著差异。

结论:本研究表明,mNGS 可为疑似 TB 感染患者的 BALF 或肺组织活检样本提供有效的 MTBC 检测方法。当 BALF 样本对特殊病变部位的病原体捕获价值有限或患者对支气管肺泡灌洗(BAL)程序有禁忌时,肺活检组织是 mNGS 检测 MTBC 的可选标本。然而,在 MTBC 感染患者中,肺组织-mNGS 是否优于 BALF-mNGS,还需要更多病例的前瞻性多中心随机对照研究来进一步证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/951f7b4ae4d5/12890_2022_2079_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/68827c4a30cc/12890_2022_2079_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/873359440b9a/12890_2022_2079_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/55f43bba4fe3/12890_2022_2079_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/951f7b4ae4d5/12890_2022_2079_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/68827c4a30cc/12890_2022_2079_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/873359440b9a/12890_2022_2079_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/55f43bba4fe3/12890_2022_2079_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e492/9336096/951f7b4ae4d5/12890_2022_2079_Fig4_HTML.jpg

相似文献

[1]
The performance of detecting Mycobacterium tuberculosis complex in lung biopsy tissue by metagenomic next-generation sequencing.

BMC Pulm Med. 2022-7-28

[2]
Tuberculosis Diagnosis by Metagenomic Next-generation Sequencing on Bronchoalveolar Lavage Fluid: a cross-sectional analysis.

Int J Infect Dis. 2021-3

[3]
Optimal specimen type for accurate diagnosis of infectious peripheral pulmonary lesions by mNGS.

BMC Pulm Med. 2020-10-15

[4]
Improving Suspected Pulmonary Infection Diagnosis by Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing: a Multicenter Retrospective Study.

Microbiol Spectr. 2022-8-31

[5]
Diagnostic Accuracy of Metagenomic Next-Generation Sequencing in Sputum-Scarce or Smear-Negative Cases with Suspected Pulmonary Tuberculosis.

Biomed Res Int. 2021

[6]
The Value of Combined Radial Endobronchial Ultrasound-Guided Transbronchial Lung Biopsy and Metagenomic Next-Generation Sequencing for Peripheral Pulmonary Infectious Lesions.

Can Respir J. 2020

[7]
Clinical Evaluation of Diagnosis Efficacy of Active Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples.

Front Cell Infect Microbiol. 2019-10-18

[8]
Evaluating the diagnostic value of using metagenomic next-generation sequencing on bronchoalveolar lavage fluid and tissue in infectious pathogens located in the peripheral lung field.

Ann Palliat Med. 2022-5

[9]
Diagnostic value of metagenomic next-generation sequencing of bronchoalveolar lavage fluid for the diagnosis of suspected pneumonia in immunocompromised patients.

BMC Infect Dis. 2022-4-29

[10]
[Application value of metagenomic next-generation sequencing (mNGS) in the diagnosis of different types of tuberculosis].

Zhonghua Jie He He Hu Xi Za Zhi. 2021-2-12

引用本文的文献

[1]
Shotgun Metagenomic Sequencing Analysis as a Diagnostic Strategy for Patients with Lower Respiratory Tract Infections.

Microorganisms. 2025-6-9

[2]
Comprehensive Analysis of Pathogen Diversity and Diagnostic Biomarkers in Patients with Suspected Pulmonary Tuberculosis Through Metagenomic Next-Generation Sequencing.

Infect Drug Resist. 2025-5-2

[3]
Prevalence of extrapulmonary tuberculosis and factors influencing successful treatment outcomes among notified cases in South India.

Sci Rep. 2025-3-10

[4]
A Perplexing Case Highlighting the Diagnostic Conundrum of Miliary Tuberculosis Mimicking Sarcoidosis and Progressing Into Hemophagocytic Lymphohistiocytosis.

Cureus. 2025-2-6

[5]
Diagnostic accuracy of metagenomic next-generation sequencing in pulmonary tuberculosis: a systematic review and meta-analysis.

Syst Rev. 2024-12-27

[6]
The Metabolic Potential of the Human Lung Microbiome.

Microorganisms. 2024-7-17

[7]
Determination of Ideal Factors for Early Adoption and Standardization of Metagenomic Next-generation Sequencing for Respiratory System Infections.

Curr Pharm Biotechnol. 2024

[8]
Metagenomic next-generation sequencing for complex detection: a meta-analysis.

Front Public Health. 2023

[9]
Clinical Value of Metagenomic Next-Generation Sequencing Using Spinal Tissue in the Rapid Diagnosis of Spinal Tuberculosis.

Infect Drug Resist. 2023-5-29

本文引用的文献

[1]
Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics.

BMC Pulm Med. 2022-1-7

[2]
The Diagnostic Value of Metagenomic Next-Generation Sequencing in Lower Respiratory Tract Infection.

Front Cell Infect Microbiol. 2021

[3]
The Role of Microbiome and Virome in Idiopathic Pulmonary Fibrosis.

Biomedicines. 2021-4-20

[4]
Promoter Polymorphisms Associated With Pulmonary Tuberculosis in a Chinese Han Population.

Front Immunol. 2020

[5]
Effects of Hematopoietic Cell Transplantation on the Pulmonary Immune Response to Infection.

Front Pediatr. 2021-1-26

[6]
Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection.

Immunity. 2021-3-9

[7]
Role of the PE/PPE Family in Host-Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design.

Front Cell Infect Microbiol. 2020

[8]
Regulation of KSHV Latency and Lytic Reactivation.

Viruses. 2020-9-17

[9]
Pathogenic characteristics of sputum and bronchoalveolar lavage fluid samples from patients with lower respiratory tract infection in a large teaching hospital in China: a retrospective study.

BMC Pulm Med. 2020-8-31

[10]
Bioactive natural compounds against human coronaviruses: a review and perspective.

Acta Pharm Sin B. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索