Suppr超能文献

使用深度学习算法通过结构磁共振成像识别精神分裂症。

Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm.

作者信息

Oh Jihoon, Oh Baek-Lok, Lee Kyong-Uk, Chae Jeong-Ho, Yun Kyongsik

机构信息

Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

Department of Ophthalmology, Seoul National University Hospital, Seoul, South Korea.

出版信息

Front Psychiatry. 2020 Feb 3;11:16. doi: 10.3389/fpsyt.2020.00016. eCollection 2020.

Abstract

OBJECTIVE

Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.

METHOD

Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.

RESULTS

The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.

CONCLUSIONS

The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.

摘要

目的

尽管精神分裂症患者存在明显的结构异常,但利用磁共振成像(MRI)检测精神分裂症仍具有挑战性。本研究旨在使用经过训练的深度学习算法在结构MRI数据集中检测精神分裂症。

方法

来自精神分裂症患者和正常受试者的五个公共MRI数据集(BrainGluSchi、COBRE、MCICShare、NMorphCH和NUSDAST),共873个结构MRI数据集,用于训练深度卷积神经网络。

结果

用结构MR图像训练的深度学习算法在随机选择的图像中检测精神分裂症,具有可靠的性能(受试者操作特征曲线下面积[AUC]为0.96)。该算法还能在一个先前未遇到的数据集中识别精神分裂症患者的MR图像,AUC为0.71至0.90。当呈现一个比训练数据集患者更年轻、病程更短的新数据集时,深度学习算法的分类性能降至AUC为0.71。对算法性能贡献最大的脑区是右侧颞叶区,其次是右侧顶叶区。在100张随机选择的脑图像中,半训练的临床专家几乎无法区分精神分裂症患者和健康对照(AUC:0.61)。

结论

深度学习算法在检测精神分裂症方面表现出良好性能,并从脑部结构MRI数据中识别出相关结构特征;在疾病早期的另一组患者中,其具有可接受的分类性能。深度学习可用于描绘精神分裂症的结构特征,并在临床环境中提供补充诊断信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46b1/7008229/88f623f42e97/fpsyt-11-00016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验