Suppr超能文献

基于预训练模型和分子图的多药物表示学习在药物相互作用和联合预测中的应用。

Multidrug representation learning based on pretraining model and molecular graph for drug interaction and combination prediction.

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.

出版信息

Bioinformatics. 2022 Sep 15;38(18):4387-4394. doi: 10.1093/bioinformatics/btac538.

Abstract

MOTIVATION

Approaches for the diagnosis and treatment of diseases often adopt the multidrug therapy method because it can increase the efficacy or reduce the toxic side effects of drugs. Using different drugs simultaneously may trigger unexpected pharmacological effects. Therefore, efficient identification of drug interactions is essential for the treatment of complex diseases. Currently proposed calculation methods are often limited by the collection of redundant drug features, a small amount of labeled data and low model generalization capabilities. Meanwhile, there is also a lack of unique methods for multidrug representation learning, which makes it more difficult to take full advantage of the originally scarce data.

RESULTS

Inspired by graph models and pretraining models, we integrated a large amount of unlabeled drug molecular graph information and target information, then designed a pretraining framework, MGP-DR (Molecular Graph Pretraining for Drug Representation), specifically for drug pair representation learning. The model uses self-supervised learning strategies to mine the contextual information within and between drug molecules to predict drug-drug interactions and drug combinations. The results achieved promising performance across multiple metrics compared with other state-of-the-art methods. Our MGP-DR model can be used to provide a reliable candidate set for the combined use of multiple drugs.

AVAILABILITY AND IMPLEMENTATION

Code of the model, datasets and results can be downloaded from GitHub (https://github.com/LiangYu-Xidian/MGP-DR).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

疾病的诊断和治疗方法通常采用多药物治疗方法,因为它可以提高药物的疗效或降低药物的毒副作用。同时使用不同的药物可能会引发意想不到的药理作用。因此,有效地识别药物相互作用对于治疗复杂疾病至关重要。目前提出的计算方法通常受到冗余药物特征的收集、少量标记数据和低模型泛化能力的限制。同时,也缺乏用于多药物表示学习的独特方法,这使得更难以充分利用原本稀缺的数据。

结果

受图模型和预训练模型的启发,我们整合了大量未标记的药物分子图信息和目标信息,然后设计了一个预训练框架 MGP-DR(用于药物表示的分子图预训练),专门用于药物对表示学习。该模型使用自监督学习策略挖掘药物分子内和分子间的上下文信息,以预测药物-药物相互作用和药物组合。与其他最先进的方法相比,该模型在多个指标上都取得了有前景的性能。我们的 MGP-DR 模型可用于为多种药物联合使用提供可靠的候选药物集。

可用性和实现

模型代码、数据集和结果可从 GitHub(https://github.com/LiangYu-Xidian/MGP-DR)下载。

补充信息

补充数据可在 Bioinformatics 在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验