Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.
Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
PLoS Pathog. 2022 Jul 29;18(7):e1010583. doi: 10.1371/journal.ppat.1010583. eCollection 2022 Jul.
The spike (S) protein of SARS-CoV-2 has been observed in three distinct pre-fusion conformations: locked, closed and open. Of these, the function of the locked conformation remains poorly understood. Here we engineered a SARS-CoV-2 S protein construct "S-R/x3" to arrest SARS-CoV-2 spikes in the locked conformation by a disulfide bond. Using this construct we determined high-resolution structures confirming that the x3 disulfide bond has the ability to stabilize the otherwise transient locked conformations. Structural analyses reveal that wild-type SARS-CoV-2 spike can adopt two distinct locked-1 and locked-2 conformations. For the D614G spike, based on which all variants of concern were evolved, only the locked-2 conformation was observed. Analysis of the structures suggests that rigidified domain D in the locked conformations interacts with the hinge to domain C and thereby restrains RBD movement. Structural change in domain D correlates with spike conformational change. We propose that the locked-1 and locked-2 conformations of S are present in the acidic high-lipid cellular compartments during virus assembly and egress. In this model, release of the virion into the neutral pH extracellular space would favour transition to the closed or open conformations. The dynamics of this transition can be altered by mutations that modulate domain D structure, as is the case for the D614G mutation, leading to changes in viral fitness. The S-R/x3 construct provides a tool for the further structural and functional characterization of the locked conformations of S, as well as how sequence changes might alter S assembly and regulation of receptor binding domain dynamics.
SARS-CoV-2 的刺突 (S) 蛋白已被观察到存在三种不同的预融合构象:锁定、关闭和开放。在这些构象中,锁定构象的功能仍知之甚少。在这里,我们设计了一种 SARS-CoV-2 S 蛋白构建体“S-R/x3”,通过二硫键将 SARS-CoV-2 刺突固定在锁定构象中。使用该构建体,我们确定了高分辨率结构,证实 x3 二硫键能够稳定瞬态锁定构象。结构分析表明,野生型 SARS-CoV-2 刺突可以采用两种不同的锁定 1 和锁定 2 构象。对于 D614G 刺突,所有关注的变体都是基于该刺突进化而来的,只观察到锁定 2 构象。结构分析表明,在锁定构象中刚性的结构域 D 与铰链结构域 C 相互作用,从而限制了 RBD 的运动。结构域 D 的结构变化与刺突构象变化相关。我们提出,在病毒组装和出芽过程中,S 的锁定 1 和锁定 2 构象存在于酸性高脂质细胞区室中。在这个模型中,病毒粒子释放到中性 pH 的细胞外空间会有利于向封闭或开放构象的转变。这种转变的动力学可以通过改变结构域 D 结构的突变来改变,就像 D614G 突变一样,导致病毒适应性的变化。S-R/x3 构建体为进一步研究 S 的锁定构象的结构和功能特性,以及序列变化如何改变 S 的组装和受体结合域动力学的调节提供了工具。