Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2300085120. doi: 10.1073/pnas.2300085120. Epub 2023 Mar 23.
The peroxymonosulfate (PMS)-triggered radical and nonradical active species can synergistically guarantee selectively removing micropollutants in complex wastewater; however, realizing this on heterogeneous metal-based catalysts with single active sites remains challenging due to insufficient electron cycle. Herein, we design asymmetric Co-O-Bi triple-atom sites in Co-doped BiOCO to facilitate PMS oxidation and reduction simultaneously by enhancing the electron transfer between the active sites. We propose that the asymmetric Co-O-Bi sites result in an electron density increase in the Bi sites and decrease in the Co sites, thereby PMS undergoes a reduction reaction to generate SO and •OH at the Bi site and an oxidation reaction to generate O at the Co site. We suggest that the synergistic effect of SO, •OH, and O enables efficient removal and mineralization of micropollutants without interference from organic and inorganic compounds under the environmental background. As a result, the Co-doped BiOCO achieves almost 99.3% sulfamethoxazole degradation in 3 min with a k-value as high as 82.95 min M, which is superior to the existing catalysts reported so far. This work provides a structural regulation of the active sites approach to control the catalytic function, which will guide the rational design of Fenton-like catalysts.
过一硫酸盐 (PMS) 引发的自由基和非自由基活性物种可以协同保证在复杂废水中选择性去除微量污染物;然而,由于电子循环不足,在具有单一活性位的异质金属基催化剂上实现这一目标仍然具有挑战性。在此,我们在 Co 掺杂的 BiOCO 中设计了不对称的 Co-O-Bi 三原子位,通过增强活性位之间的电子转移,同时促进 PMS 的氧化和还原。我们提出,不对称的 Co-O-Bi 位导致 Bi 位的电子密度增加和 Co 位的电子密度降低,从而使 PMS 在 Bi 位发生还原反应生成 SO 和 •OH,在 Co 位发生氧化反应生成 O。我们认为,SO、•OH 和 O 的协同作用能够在环境背景下有效去除和矿化微量污染物,而不受有机和无机化合物的干扰。结果,Co 掺杂的 BiOCO 在 3 分钟内几乎实现了 99.3%的磺胺甲恶唑降解,k 值高达 82.95 min M,优于迄今为止报道的现有催化剂。这项工作提供了一种活性位的结构调节方法来控制催化功能,这将指导类芬顿催化剂的合理设计。