Suppr超能文献

光激发驱动的S型异质结水凝胶界面电场增强和协同催化活化

Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field.

作者信息

Wang Aiwen, Du Meng, Ni Jiaxin, Liu Dongqing, Pan Yunhao, Liang Xiongying, Liu Dongmei, Ma Jun, Wang Jing, Wang Wei

机构信息

State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.

出版信息

Nat Commun. 2023 Oct 23;14(1):6733. doi: 10.1038/s41467-023-42542-6.

Abstract

The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.

摘要

调节异质材料特性以增强过一硫酸盐(PMS)活化来降解新兴有机污染物仍然是一项挑战。为了解决这个问题,我们合成了S型异质结PBA/MoS@壳聚糖水凝胶以实现光激发协同PMS活化。构建的异质结光激发载流子通过由定向界面电场驱动的S型转移途径与PMS进行氧化还原转换。多种协同途径极大地增强了活性氧的生成,导致多西环素降解率显著提高。同时,壳聚糖水凝胶的三维聚合物链空间结构有利于在高级氧化过程中快速捕获PMS和电子传输,减少过渡金属活化剂的使用并限制金属离子的浸出。有理由相信,通过光激发调节的S型异质结对PMS的协同活化将为未来材料设计和增强异相催化氧化过程的研究提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d0/10593843/b70a8157e9c2/41467_2023_42542_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验