Suppr超能文献

预测无体力活动测量的慢性阻塞性肺疾病患者的 6 分钟步行试验结果。

Predicting 6-minute walking test outcomes in patients with chronic obstructive pulmonary disease without physical performance measures.

机构信息

Universitat Politecnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain; Institute for Bioengineering of Catalonia (IBEC-BIST), Barcelona 08019, Spain; Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.

Universitat Politecnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain; Institute for Bioengineering of Catalonia (IBEC-BIST), Barcelona 08019, Spain; Biomedical Research Networking Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.

出版信息

Comput Methods Programs Biomed. 2022 Oct;225:107020. doi: 10.1016/j.cmpb.2022.107020. Epub 2022 Jul 11.

Abstract

BACKGROUND AND OBJECTIVE

Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements.

METHODS

Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These parameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models including the 6-min walking distance (6MWD), the maximum HR (HR) after the walking, and the HR decay 3 min after (HRR). The use of BN allows the assessment of the patients' status by predicting the 6MWT outcomes, but also inferring disease severity parameters based on actual patient's 6MWT outcomes.

RESULTS

Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong (R = 0.84, MAPE = 8.10% for HR) and moderate (R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR), improving the classical methods to estimate 6MWD. Secondly, the classification of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 84.4% for two defined severity groups.

CONCLUSIONS

We propose a powerful two-way assessment tool for COPD patients, capable of predicting 6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way to implement a continuous monitoring system for COPD patients at home and to provide more personalized care.

摘要

背景与目的

慢性阻塞性肺疾病(COPD)需要进行多因素评估,评估患者的气流受限和症状。6 分钟步行测试(6MWT)常用于评估这些患者的功能运动能力。本研究旨在提出一种新的预测模型,用于评估 COPD 患者的主要 6MWT 结果,而无需进行体能测试。

方法

从 50 例 COPD 患者中获取心肺和临床参数。这些参数被用作贝叶斯网络(BN)的输入,该网络集成了三个多元模型,包括 6 分钟步行距离(6MWD)、步行后最大心率(HR)和 3 分钟后 HR 下降(HRR)。BN 的使用允许通过预测 6MWT 结果来评估患者的状况,还可以根据实际患者的 6MWT 结果推断疾病严重程度参数。

结果

首先,估计的 6MWT 与实际测量值之间的相关性很强(HR 的 R 值为 0.84,平均绝对百分比误差为 8.10%;6MWD 的 R 值为 0.58,平均绝对百分比误差为 15.43%;HRR 的 R 值为 0.58,平均绝对百分比误差为 32.49%),提高了经典方法估计 6MWD 的准确性。其次,使用三个严重程度组进行疾病严重程度分类的准确率为 78.3%,使用两个定义的严重程度组则提高到 84.4%。

结论

我们提出了一种强大的 COPD 患者双向评估工具,能够在无需实际步行运动的情况下预测 6MWT 结果。这种基于模型的工具为 COPD 患者在家中实施连续监测系统并提供更个性化的护理开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验