Suppr超能文献

电子健康记录上的多任务异质图学习。

Multi-task heterogeneous graph learning on electronic health records.

机构信息

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.

Department of Diagnostic Radiology, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.

出版信息

Neural Netw. 2024 Dec;180:106644. doi: 10.1016/j.neunet.2024.106644. Epub 2024 Aug 22.

Abstract

Learning electronic health records (EHRs) has received emerging attention because of its capability to facilitate accurate medical diagnosis. Since the EHRs contain enriched information specifying complex interactions between entities, modeling EHRs with graphs is shown to be effective in practice. The EHRs, however, present a great degree of heterogeneity, sparsity, and complexity, which hamper the performance of most of the models applied to them. Moreover, existing approaches modeling EHRs often focus on learning the representations for a single task, overlooking the multi-task nature of EHR analysis problems and resulting in limited generalizability across different tasks. In view of these limitations, we propose a novel framework for EHR modeling, namely MulT-EHR (Multi-Task EHR), which leverages a heterogeneous graph to mine the complex relations and model the heterogeneity in the EHRs. To mitigate the large degree of noise, we introduce a denoising module based on the causal inference framework to adjust for severe confounding effects and reduce noise in the EHR data. Additionally, since our model adopts a single graph neural network for simultaneous multi-task prediction, we design a multi-task learning module to leverage the inter-task knowledge to regularize the training process. Extensive empirical studies on MIMIC-III and MIMIC-IV datasets validate that the proposed method consistently outperforms the state-of-the-art designs in four popular EHR analysis tasks - drug recommendation, and predictions of the length of stay, mortality, and readmission. Thorough ablation studies demonstrate the robustness of our method upon variations to key components and hyperparameters.

摘要

学习电子健康记录 (EHR) 因其能够促进准确的医疗诊断而受到越来越多的关注。由于 EHR 包含丰富的信息,指定了实体之间复杂的相互作用,因此使用图来建模 EHR 在实践中被证明是有效的。然而,EHR 呈现出很大的异质性、稀疏性和复杂性,这阻碍了大多数应用于它们的模型的性能。此外,现有的建模 EHR 的方法通常侧重于学习单个任务的表示,而忽略了 EHR 分析问题的多任务性质,导致在不同任务之间的通用性有限。鉴于这些限制,我们提出了一种新的 EHR 建模框架,即 MulT-EHR(多任务 EHR),它利用异构图挖掘复杂关系并对 EHR 中的异质性进行建模。为了减轻噪声的程度,我们引入了一个基于因果推理框架的去噪模块,以调整严重的混杂效应并减少 EHR 数据中的噪声。此外,由于我们的模型采用单个图神经网络同时进行多任务预测,因此我们设计了一个多任务学习模块,利用任务间的知识来规范训练过程。在 MIMIC-III 和 MIMIC-IV 数据集上的广泛实证研究验证了所提出的方法在四个流行的 EHR 分析任务——药物推荐以及住院时间、死亡率和再入院的预测——中始终优于最先进的设计。彻底的消融研究表明,我们的方法对关键组件和超参数的变化具有稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验