Suppr超能文献

基于 DNA 甲基化的表观遗传特征可预测脑胶质瘤中的体基因组改变。

DNA methylation-based epigenetic signatures predict somatic genomic alterations in gliomas.

机构信息

Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, USA.

Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.

出版信息

Nat Commun. 2022 Jul 29;13(1):4410. doi: 10.1038/s41467-022-31827-x.

Abstract

Molecular classification has improved diagnosis and treatment for patients with malignant gliomas. However, classification has relied on individual assays that are both costly and slow, leading to frequent delays in treatment. Here, we propose the use of DNA methylation, as an emerging clinical diagnostic platform, to classify gliomas based on major genomic alterations and provide insight into subtype characteristics. We show that using machine learning models, DNA methylation signatures can accurately predict somatic alterations and show improvement over existing classifiers. The established Unified Diagnostic Pipeline (UniD) we develop is rapid and cost-effective for genomic alterations and gene expression subtypes diagnostic at early clinical phase and improves over individual assays currently in clinical use. The significant relationship between genetic alteration and epigenetic signature indicates broad applicability of our approach to other malignancies.

摘要

分子分类已经改善了恶性胶质瘤患者的诊断和治疗。然而,分类依赖于既昂贵又耗时的个体检测,导致治疗经常延误。在这里,我们提出使用 DNA 甲基化作为新兴的临床诊断平台,根据主要的基因组改变对神经胶质瘤进行分类,并深入了解亚型特征。我们表明,使用机器学习模型,DNA 甲基化特征可以准确预测体细胞改变,并优于现有的分类器。我们开发的统一诊断管道 (UniD) 快速且具有成本效益,可用于早期临床阶段的基因组改变和基因表达亚型诊断,并优于目前临床使用的个体检测。遗传改变和表观遗传特征之间的显著关系表明,我们的方法广泛适用于其他恶性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f836/9338285/3d6644f83644/41467_2022_31827_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验