Suppr超能文献

基于深度学习的 DDSC-YOLOv5s 航空发动机叶片和导向叶片缺陷检测

Deep learning-based defects detection of certain aero-engine blades and vanes with DDSC-YOLOv5s.

机构信息

School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.

College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211156, China.

出版信息

Sci Rep. 2022 Jul 29;12(1):13067. doi: 10.1038/s41598-022-17340-7.

Abstract

When performed by a person, aero-engine borescope inspection is easily influenced by individual experience and human factors that can lead to incorrect maintenance decisions, potentially resulting in serious disasters, as well as low efficiency. To address the absolute requirements of flight safety and improve efficiency to decrease maintenance costs, it is imperative to realize the intelligent detection of common aero-engine defects. YOLOv5 enables real-time detection of aero-engine defects with a high degree of accuracy. However, the performance of YOLOv5 is not optimal when detecting the same defects with multiple shapes. In this work, we introduce a deformable convolutional network into the structure of YOLOv5s to optimize its performance, overcome the disadvantage of the poor geometric transformability of convolutional neural networks, and enhance the adaptability of feature maps with large differences in the shape features. We also use a depth-wise separable convolution to improve the efficiency of multichannel convolution in extracting feature information from each channel at the same spatial position while reducing the increased computational effort due to the introduction of deformable convolution networks and use k-means clustering to optimize the size of anchor boxes. In the test results, mAP50 reached 83.8%. The detection accuracy of YOLOv5s for common aero-engine defects was effectively improved with only a 7.9% increase in calculation volume. Compared with the metrics of the original YOLOv5s, mAP@50 was improved by 1.9%, and mAP@50:95 was improved by 1.2%. This study highlights the wide application potential of depth science methods in achieving intelligent detection of aero-engine defects. In addition, this study emphasizes the integration of DDSC-YOLOv5s into borescope platforms for scaled-up engine defect detection, which should also be enhanced in the future.

摘要

当由人执行时,航空发动机内窥镜检查很容易受到个人经验和人为因素的影响,这些因素可能导致错误的维护决策,从而导致严重的灾难和低效率。为了满足飞行安全的绝对要求并提高效率以降低维护成本,实现通用航空发动机缺陷的智能检测势在必行。YOLOv5 能够以高精度实时检测航空发动机缺陷。然而,当检测多个形状的相同缺陷时,YOLOv5 的性能并不最佳。在这项工作中,我们在 YOLOv5s 的结构中引入了可变形卷积网络来优化其性能,克服了卷积神经网络几何可变性差的缺点,并增强了具有形状特征差异大的特征图的适应性。我们还使用深度可分离卷积来提高多路卷积在同一空间位置从每个通道提取特征信息的效率,同时减少由于引入可变形卷积网络而增加的计算量,并使用 k-means 聚类来优化锚框的大小。在测试结果中,mAP50 达到 83.8%。YOLOv5s 对常见航空发动机缺陷的检测精度得到了有效提高,计算量仅增加了 7.9%。与原始 YOLOv5s 的指标相比,mAP@50 提高了 1.9%,mAP@50:95 提高了 1.2%。本研究强调了深度科学方法在实现航空发动机缺陷智能检测方面的广泛应用潜力。此外,本研究强调了将 DDSC-YOLOv5s 集成到内窥镜平台中进行大规模发动机缺陷检测,这在未来也应得到加强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de17/9338258/1d395b5b05e1/41598_2022_17340_Fig9_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验