Suppr超能文献

利用血管周围脂肪 CT 放射组学特征和临床危险因素预测冠状动脉钙化斑块。

Predicting coronary artery calcified plaques using perivascular fat CT radiomics features and clinical risk factors.

机构信息

Department of Radiology, The First Affiliated Hospital of USTC, Wannan Medical College, Wuhu, 241002, Anhui, China.

GE Healthcare China, No. 1 Huatuo Road, Pudong New Town, Shanghai, 210000, China.

出版信息

BMC Med Imaging. 2022 Jul 29;22(1):134. doi: 10.1186/s12880-022-00858-7.

Abstract

OBJECTIVE

The purpose of this study was to develop a combined radiomics model to predict coronary plaque texture using perivascular fat CT radiomics features combined with clinical risk factors.

METHODS

The data of 200 patients with coronary plaques were retrospectively analyzed and randomly divided into a training group and a validation group at a ratio of 7:3. In the training group, The best feature set was selected by using the maximum correlation minimum redundancy method and the least absolute shrinkage and selection operator. Radiomics models were built based on different machine learning algorithms. The clinical risk factors were then screened using univariate logistic regression analysis. and finally a combined radiomics model was developed using multivariate logistic regression analysis to combine the best performing radiomics model with clinical risk factors and validated in the validation group. The efficacy of the model was assessed by a receiver operating characteristic curve, the consistency of the nomogram was assessed using calibration curves, and the clinical usefulness of the nomogram was assessed using decision curve analysis.

RESULTS

Twelve radiomics features were used by different machine learning algorithms to construct the radiomics model. Finally, the random forest algorithm built the best radiomics model in terms of efficacy, and this was combined with age to construct a combined radiomics model. The area under curve for the training and validation group were 0.98 (95% confidence interval, 0.95-1.00) and 0.97 (95% confidence interval, 0.92-1.00) with sensitivities of 0.92 and 0.86 and specificities of 0.99 and 1, respectively. The calibration curve demonstrated that the nomogram had good consistency, and the decision curve analysis demonstrated that the nomogram had high clinical utility.

CONCLUSIONS

The combined radiomics model established based on CT radiomics features and clinical risk factors has high value in predicting coronary artery calcified plaque and can provide a reference for clinical decision-making.

摘要

目的

本研究旨在开发一种联合放射组学模型,利用血管周围脂肪 CT 放射组学特征结合临床危险因素预测冠状动脉斑块纹理。

方法

回顾性分析 200 例冠状动脉斑块患者的数据,并按 7:3 的比例将其随机分为训练组和验证组。在训练组中,使用最大相关最小冗余法和最小绝对收缩和选择算子选择最佳特征集。基于不同的机器学习算法构建放射组学模型。然后使用单变量逻辑回归分析筛选临床危险因素,并使用多变量逻辑回归分析将表现最佳的放射组学模型与临床危险因素相结合,建立联合放射组学模型,并在验证组中进行验证。使用受试者工作特征曲线评估模型的效能,使用校准曲线评估列线图的一致性,使用决策曲线分析评估列线图的临床实用性。

结果

使用不同的机器学习算法构建了 12 个放射组学特征的放射组学模型。最终,随机森林算法在效能方面构建了最佳的放射组学模型,该模型与年龄相结合构建了联合放射组学模型。训练组和验证组的曲线下面积分别为 0.98(95%置信区间,0.95-1.00)和 0.97(95%置信区间,0.92-1.00),敏感度分别为 0.92 和 0.86,特异度分别为 0.99 和 1。校准曲线表明列线图具有良好的一致性,决策曲线分析表明列线图具有较高的临床实用性。

结论

基于 CT 放射组学特征和临床危险因素建立的联合放射组学模型对预测冠状动脉钙化斑块具有较高的价值,可为临床决策提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9230/9338488/e25539ab7d9b/12880_2022_858_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验