Suppr超能文献

基于生物信息学分析和 RT-qPCR 验证的四基因signature 预测肝细胞癌的总生存和免疫浸润。

Four-gene signature predicting overall survival and immune infiltration in hepatocellular carcinoma by bioinformatics analysis with RT‒qPCR validation.

机构信息

Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China.

出版信息

BMC Cancer. 2022 Jul 30;22(1):830. doi: 10.1186/s12885-022-09934-1.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is one of the most lethal cancers, with a poor prognosis. Prognostic biomarkers for HCC patients are urgently needed. We aimed to establish a nomogram prediction system that combines a gene signature to predict HCC prognosis.

METHODS

Differentially expressed genes (DEGs) were identified from publicly available Gene Expression Omnibus (GEO) datasets. The Cancer Genome Atlas (TCGA) cohort and International Cancer Genomics Consortium (ICGC) cohort were regarded as the training cohort and testing cohort, respectively. First, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) regression Cox analysis were performed to construct a predictive risk score signature. Furthermore, a nomogram system containing a risk score and other prognostic factors was developed. In addition, a correlation analysis of risk group and immune infiltration was performed. Finally, we validated the expression levels using real-time PCR.

RESULTS

Ninety-five overlapping DEGs were identified from four GEO datasets, and we constructed a four-gene-based risk score predictive model (risk score = EZH2 * 0.075 + FLVCR1 * 0.086 + PTTG1 * 0.015 + TRIP13 * 0.020). Moreover, this signature was an independent prognostic factor. Next, the nomogram system containing risk score, sex and TNM stage indicated better predictive performance than independent prognostic factors alone. Moreover, this signature was significantly associated with immune cells, such as regulatory T cells, resting NK cells and M2 macrophages. Finally, RT‒PCR confirmed that the mRNA expressions of four genes were upregulated in most HCC cell lines.

CONCLUSION

We developed and validated a nomogram system containing the four-gene risk score, sex, and TNM stage to predict prognosis.

摘要

背景

肝细胞癌(HCC)是最致命的癌症之一,预后不良。HCC 患者的预后生物标志物亟待建立。我们旨在建立一个结合基因特征预测 HCC 预后的诺莫图预测系统。

方法

从公共基因表达综合数据库(GEO)数据集识别差异表达基因(DEGs)。癌症基因组图谱(TCGA)队列和国际癌症基因组联合会(ICGC)队列分别作为训练队列和测试队列。首先,进行单变量和多变量 Cox 分析和最小绝对值收缩和选择算子(LASSO)回归 Cox 分析,以构建预测风险评分特征。此外,建立了包含风险评分和其他预后因素的诺莫图系统。此外,还进行了风险组与免疫浸润的相关性分析。最后,我们使用实时 PCR 验证了表达水平。

结果

从四个 GEO 数据集鉴定了 95 个重叠的 DEGs,并构建了一个基于四个基因的风险评分预测模型(风险评分=EZH20.075+FLVCR10.086+PTTG10.015+TRIP130.020)。此外,该特征是独立的预后因素。接下来,包含风险评分、性别和 TNM 分期的诺莫图系统比独立预后因素具有更好的预测性能。此外,该特征与免疫细胞显著相关,如调节性 T 细胞、静止 NK 细胞和 M2 巨噬细胞。最后,RT-PCR 证实四个基因的 mRNA 表达在大多数 HCC 细胞系中上调。

结论

我们开发并验证了一个包含四个基因风险评分、性别和 TNM 分期的诺莫图系统,用于预测预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02fb/9338612/85089947c658/12885_2022_9934_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验